
Wearable Robotics Workshop
IEEE UNSW Student Branch 2019

Luke Wicent Sy

Abstract—This workshop aims to give students an introduction
to wearable robotics.

Index Terms—wearable robotics, exoskeleton

CONTENTS

I Introduction 1
I-A Why Wearable Robotics? 1
I-B State of the art 1
I-C Hardware Overview 1
I-D Why STM32 Microcontroller? 1

II S01 - 3D CAD Design 2
II-A Work environment setup 2
II-B Making the cuffs 2
II-C 3D Printing 3
II-D Full Exo Arm Model 4

III S02 - uC Programming and Control 4
III-A Work environment setup 4
III-B [Optional] Blink 5
III-C Making the arm move (Motor test) . . . 5
III-D Force sensing 6
III-E Feedback control - PID 6
III-F Challenge: Exoarm Teleoperation 7

IV S03 - Computer interaction 7
IV-A Install processing IDE 7
IV-B Orientation Estimation 7
IV-C Bicep 3D viewer 8
IV-D Arm 3D viewer 9
IV-E Challenge: Game interaction - Simple

pong 9
IV-F Challenge: Control Exoarm via GUI v1 9
IV-G Challenge: Control Exoarm via GUI v2 10

V Electromyography (EMG) control 10
V-A Reading signal 10
V-B Feedback control 10

VI Acknowledgements 10

I. INTRODUCTION

This document accompanies the workshop held at IEEE
University of New South Wales (UNSW) Sydney student
branch during Term 3 2019 where one learns the different
skills involved in making an exoskeleton arm (exoarm).

Disclaimer: this project is not the first of its kind. In fact,
this project took inspiration from Eduexo [1] and Exbow [2].
Nevertheless, as the motto of UNSW ”Manu et Mente” says,
we hope to encourage learning by hand and mind.

A. Why Wearable Robotics?

Wearable robotics can enable or enhance movement which
can be used in performance enhancement, rehabilitation, and
tele-operation applications.

(a) Military (b) Rehab (c) Teleoperation

Fig. 1. Sample Application

B. State of the art

For exoskeletons used in spinal cord injury (SCI) applica-
tions, several reports have demonstrated that these exoskeleton
systems are safe [3]. Exoskeletons require each patient to do
some sort of calibration for 2 - 3 sessions of 10 - 30 minutes
fitting plus at least 1 hour of safety procedures. The typical
walking speed is 0.2 m/s (max of 0.7 m/s for some devices).
In contrast, average walking speed is 1.4 m/s.

Some limitations are as follows:
• Designed for < 100 kg patients making obese patients

out of scope.
• Low metabolic cost during exoskeleton training can be

bad for the patients health.
• Further limited by patient’s limited range of motion, weak

bone health, and prone to pressure injuries.
• Requires a well-trained caregiver
• Very prohibitive cost

C. Hardware Overview

Fig. 2 (below) shows a snapshot of the exoskeleton arm.
Table I (below) shows the pin connections from the sensors
to the microcontroller. Table II (below) shows an overview
of the bill of materials. If time and resource permits you, we
encourage you to buy the corresponding parts and make your
very own exoskeleton arm following this manual.

D. Why STM32 Microcontroller?

STMicroelectronics is one of the largest suppliers of mi-
crocontroller units (MCU) and their products are found in
most embedded systems today. It would be beneficial for
students to be exposed in MCUs used in the industry such
as STM32 as opposed to using Arduino boards which are not

https://eduexo.com
http://www.ecs.umass.edu/exbow/

Fig. 2. Exo Arm Snapshot

TABLE I
PIN CONNECTABLE TABLE

Description Pin

On Board LED PC13
Load Cell
(Force Sensor)

Dout: PC14
SCK: PC13

Motor PB1

Bluetooth PA9, PA10
IMU I2C SDA: PB7, SCL: PB6

Power: PB8, GND: PB9

meant to be used on commercial products but mainly used to
quickly implement or demonstrate simple projects. Moreover,
the STM32F0 has superior hardware specifications compared
to ATMEGA328 on Arduino boards.

STM has developed and continuously supporting its own
HAL (Hardware Abstraction Library) which not only helps
developers in quickly and easily setting up the microcontroller,
but also provides basic libraries for the MCUs different
systems such as communications (UART, SPI, I2C), memory
management, USB, etc. STM HAL supports all families and
every series of the STM MCUs, so it would be easy for
developers to just use the library on other MCU which might
be more suitable for the application. Arduino also has its own
libraries, but are done in high level in which most hardware-
software integration are obfuscated to the users.

See quora and udemy for further discussions on why

TABLE II
BILL OF MATERIALS AS OF SEPT. 2019

Item Unit Price (AU$)

USB to Serial PL2303 1 $ 4.00

STM32F103 uC (AKA blue pill) 1 $ 4.00

HC-05 Bluetooth 1 $ 7.00

SparkFun IMU Breakout
MPU-9250 - SEN-13762

1 $ 20.00

MG996R Servo Motor 1 $ 7.00

Load cell 5Kg + Hx711 1 $ 8.00

Total $ 50.00

STM32. In this workshop, we will be using an MCUs used
in the industry with the Arduino library (i.e., STM32duino
instead of STM HAL) as students are more likely to be familiar
with the Arduino environment.

II. S01 - 3D CAD DESIGN

In this section, we will be teaching the basics of CAD model
design with the intention of 3D printing the parts that will be
created. As a tutorial, we will shown how to design the cuff
part of the exoskeleton arm and leave the reader to designing
the full exoskeleton arm.

A. Work environment setup

Register to onShape link as shown in Fig. 3 using your
school (UNSW) email address and avail your free Education
subscription. Similar CAD tools may also be used.

Fig. 3. Onshape Education Registration

B. Making the cuffs

1) Create a document (#1) and set document name (#2) as
shown below.

2) Create a new sketch and select the Top plane as shown
below.

3) Draw two concentric circles let’s say 100 mm and 110
mm. You can reduce these diameters depending on your
wrist or arm diameter. To draw a circle click the circle

https://www.quora.com/Why-is-the-STM32-better
https://www.udemy.com/cortex-m/?couponCode=QUORA25SPECIAL
https://stm32-base.org/boards/STM32F103C8T6-Blue-Pill
https://www.onshape.com/products/education

icon (#1). For simplicity, set the center to the center of
the top plane (#2) with any arbitrary size. The size can
be adjusted using (#3). Click it and lay it on the circle
created. Double click on the length and change to what
you require. Lastly, add a mid-line using (#4). Clicking
the line segment icon (#4) and lay it on the middle of
the circle (#5).

4) Next, we will make the rectangle that will connect
the cuff to the exoskeleton arm. Draw a Center point
rectangle by clicking (#1). Lay two rectangles on the
lower intersect of the vertical line and the outer circle
as shown in (#2). Set the width and length as shown in
the figure below using (#3).

5) Extrude the relevant sections of the cuff sketch as shown
in the figure below by clicking on the Extrude tool (#1).
Set the depth to 25mm (#2) and select the appropriate
sections (#3).

6) If viewing the model at 3D view, it should look some-
thing like the figure below.

7) Next, holes will be added on the cuffs. One for the screw

that will attach it to the exoskeleton arm, the other for
the straps that will fasten the cuff to your arms. To begin,
make a sketch on the side of the cuff.

8) Add two points with the dimensions as shown in the
figure below. The holes will be created from these points.
First, add a line segment in the middle of the rectangle
using (#1) as can seen from the side view (#2). Add two
points along the line at arbitrary positions (#3 and #4).
Set the distances between the points as specified in the
figure (#5 and #6).

9) Add holes from the two points made in the prior step.
Click the hole icon (#1), set the appropriate settings as
shown in (#2), and select the corresponding points for
the hole (#3).

10) Export the part in the desired format (e.g., STL) for 3D
printing (#1 and #3). To rename the part, click (#2).

C. 3D Printing

If you are a UNSW student, you may want to explore the
Maker space (link) and use their 3D printers. At the time of
writing, they charge AU$3 per hour.

https://www.making.unsw.edu.au/dfl/bookings/book-machine/book-3D-printers/

D. Full Exo Arm Model

After designing the cuffs (Sec. II-B), you should now have
the basics of designing your own parts for 3D printing. We
challenge you to design your own exoskeleton arm model!
The exoskeleton arm will most likely consist of the following
parts: i) biceps, ii) motor holder, iii) fore arm (two subparts),
and iv) cuffs (now done). A sample exoskeleton arm CAD
model is shown below (Fig. 4). The onShape project can also
be viewed here.

Fig. 4. Snapshot of our exoskeleton arm

III. S02 - UC PROGRAMMING AND CONTROL

In this section, we will be teaching the basics of micro-
controller (uC) programming and the intricacies related in
controlling an exoskeleton device. Specifically in this tutorial,
we will show you how to interact with each of the sensors and
actuators embedded in the exoskeleton arm, and then finally
combine all of them together to control the arm using a PID
controller. This project will be using a STM32F103 board,
specifically the board more commonly known as blue pill.

A. Work environment setup

1) Installing the Arduino IDE.
a) The easiest way to start programming the mi-

crocontroller is through the Arduino IDE. First
open the following website link. Then scroll down
and download the appropriate installer for your
operating system. Run the executable file you have
just downloaded and you should be greeted with
the following screen (may vary depending on your
operating system).

b) Click ’I Agree’. In the next screen ensure that
’Install USB driver’ and ’Associate .ino files’ are
marked and click ’Next’.

c) Then select the destination folder and hit ’Install’.
Once completed you can close the current window.
Some prompts to install some USB drivers should
pop up. Select ’Install’ on all prompts that appear.

2) Configuring the IDE [4]
a) Open the Arduino application and navigate to File
→ Preferences. Click on the button on the right of
’Additional Boards Manager URLs’ (indicated in
Fig. below). Copy the following address into the
textbox that appears and hit OK.
https://github.com/stm32duino/
BoardManagerFiles/raw/master/STM32/package
stm index.json

b) Hit ’OK’ again to exit the preferences menu and
navigate to Tools → Board → Board Manager.
Under ’Type’ select ’Contributed’. Scroll down
and install the latest version of ’STM32 Cores
by STMicroelectronics’. This should take a while.
Upon successful installation you may close the
window.

3) We’re almost there. As the microcontroller board

https://cad.onshape.com/documents/0337c9b25e2dc396f9024346/w/7727ee29588417b832f1eace/e/13d5a93d271ae2fe2b9ae086
https://www.arduino.cc/en/main/software

(bluepill) used was for hobby-ist (i.e., free), we had to
install another hardware library.

a) Download Arduino_STM32-master.zip from link.
Additionally, here’s the link to the github repo.

b) Extract to C:\Users\<username>\Documents\

Arduino\hardware. Create the hardware folder if
it doesn’t exist. The directory listing should look
like below.
hardware
\- Arduino_STM32-master

\- LICENSE
\- README.md
\- STM32F1
\- STM32F4
\- drivers
\- tools

c) Restart the Arduino IDE.
4) Set the IDE board settings (under Tools tab) to the

following. If Generic STM32F103C is not on the list,
make sure you double check the prior step.

5) Ensure to select the correct COM port (Tools → Port)
6) For Windows 10, run C:\Users\<username>\Documents

\Arduino\hardware\Arduino_STM32-master\drivers\

win\install_drivers.bat to install the serial driver.
Click ”yes” if admin permission is requested. See link
for more details.

WARNING: EACH TIME BEFORE PROGRAMMING
THE MICROCONTROLLER, PLEASE UNPLUG THE
MOTOR POWER. IF THE MOTOR HAPPENS TO
RUN (FROM SOME CODE DOWNLOADED PRIOR), IT
MIGHT PULL A HIGH ENOUGH CURRENT TO DAM-
AGE YOUR LAPTOP. IF UNSURE, ASK THE DEMON-
STRATOR BEFORE PLUGGING IN YOUR LAPTOP.
My personal computer shut down a number of times due to
this mishap. Remove the IMU (red board) and see Fig. 5.

Fig. 5. WARNING: Unplug motor power when programming STM32

B. [Optional] Blink
Nothing to fancy here but just a sanity check to make sure

our microcontroller (uC) is working. Feel free to skip. See

github code.
The aim of this task is to repeatedly blink the on-board

LED (on for one second and off for one second). This feedback
will allow you to determine if you have successfully set up the
software and are able to communicate with the microprocessor.

1) Initialise the LED pin (e.g., PC13) to act as an output.
The function void setup() runs instructions at startup
everytime the board is powered on or reset.

1 void setup() {
2 pinMode(PC13, OUTPUT);
3 }

2) Write your code on the function void loop() to indef-
initely flash the LED. If it’s your first time writing an
Arduino code, see next item for detailed description.

1 void loop() {
2 digitalWrite(PC13, HIGH); // turn the LED on
3 delay(1000); // wait for a second
4 digitalWrite(PC13, LOW); // turn the LED off
5 delay(1000); // wait for a second
6 }

3) digitalWrite() takes two arguments, the pin and the
state. In the code above, we set pin PC13 to ’HIGH’
or ’LOW’. Setting the output ’HIGH’ will send a high
voltage level (3.3V) to the pin and turn on the LED.
Setting the output ’LOW’ will turn off the LED.

4) delay() will cause the micro-controller to wait 1 second
before executing the next command. For a 1 second
delay, the value will be 1000.

5) Compile and upload the code to STM32.

C. Making the arm move (Motor test)

The aim of this task is to make the exoskeleton arm (motor
at the elbow joint) move. See github code. The primary
actuator we will be using is a servos motor. Servo motors have
integrated gears and a shaft that can be precisely controlled.
In this project, the servo motor MG996R (torque 9.4 kg/cm
at 4.8V) can be controlled by the duty cycle of a pulse width
signal (datasheet).

1) Install the Servo library by Michael Margolis through
the Library Manager (Sketch → Include Library →
Manage Libraries). This library will be used to send
pulse width signals of different width to the servo motor.

2) Add the code below for initialisation, and initialise
Servo myservo which is the (software) object that we
will use to control the motor.

1 #include <Servo.h>
2

3 #define MOTOR_PIN PB1
4 #define MOTOR_MAXPOS 125
5 #define MOTOR_MINPOS 0
6 #define DELAY 2000
7 Servo myservo;

3) Again, add the code below to setup() to configure
myservo with the corresponding STM32 pin. Lastly, let
us command the motor to go 0◦.

1 void setup() {
2 pinMode(MOTOR_PIN, OUTPUT);

https://github.com/rogerclarkmelbourne/Arduino_STM32/archive/master.zip
https://github.com/rogerclarkmelbourne/Arduino_STM32
https://github.com/rogerclarkmelbourne/Arduino_STM32/wiki/Installation
https://github.com/lsy3/exoarm/tree/master/s02-control/blink
https://github.com/lsy3/exoarm/tree/master/s02-control/motor-basic
https://components101.com/motors/mg996r-servo-motor-datasheet
https://www.arduino.cc/en/Reference/Servo

3 myservo.attach(MOTOR_PIN);
4 myservo.write(0);
5 delay(DELAY);
6 }

4) Compile and upload the code to STM32. After upload-
ing, unplug the exoarm, reconnect the motor power, and
then power the exoarm

5) Try moving the arm. You should feel that the motor is
actually strong enough to resist normal movements.

Challenge: Modify the existing code to make it move
through a range of motion, let’s say from 0 to 90 degrees.
Don’t make the motor move past 120 degrees or you might
damage the 3D printed body. We highly recommend you add
a range check (see code snippet below) when commanding the
servo motor. For the solution, see github motor rotate code.

1 if(pos < MOTOR_MINPOS) pos = MOTOR_MINPOS;
2 else if(pos > MOTOR_MAXPOS) pos = MOTOR_MAXPOS;
3 myservo.write(pos);

D. Force sensing

This section aims to introduce you on sensing modalities to
understand the user’s intention with regards to controlling an
exoskeleton. In this tutorial, we will specifically sense from
a load cell, a kind of 1D force sensor. For more details, see
github code, datasheet, and similar projects. To be specific,
the load cell’s resistance changes depending on where force
is applied. This sensor is similar to what weighing scales use.
The change in resistance is typically small and additional
circuitry is needed. In our case, a wheat stone bridge of
resistors coupled with an amplifier is needed to translate the
signal into something our microcontroller can understand.

1) Install the HX711 library by Bogdan Necula, Andreas
Motl (at the time or writing, v0.7.2) through the Li-
brary Manager (Sketch → Include Library → Manage
Libraries). This library will be used to read the (uncali-
brated) weight from the load cell.

2) Initialise HX711 scale with the code below which is the
(software) object for communicating with the load cell.
For debugging purposes, we also initialized Serial.

1 #include "HX711.h"
2 #define calibration_factor -7050.0
3 #define LOADCELL_DOUT_PIN PC14
4 #define LOADCELL_SCK_PIN PC13
5 HX711 scale;
6 void setup() {
7 Serial.begin(9600);
8 scale.begin(LOADCELL_DOUT_PIN,

LOADCELL_SCK_PIN);
9 scale.set_scale(calibration_factor);

10 scale.tare(); // reset the scale to 0
11 }

3) The force is then read through scale.get_units(). The
value sensed by the scale can be in pounds(lbs) or
kilograms depending on the calibration factor.

1 void loop() {
2 Serial.print(scale.get_units(), 1);
3 Serial.println(" lbs or kg(?)");
4 delay(10);
5 }

4) Compile and upload the code to STM32. To test,
run your favorite serial monitor (e.g., Teraterm or the
Arduino IDE builtin serial monitor, Tools → Serial
Monitor). See Fig. 6 for sample output.

Fig. 6. Load Cell Sample Output

E. Feedback control - PID
Now, it’s time to bring it all together! Without a sensing and

control loop, the exoarm will be stuck at a certain elbow angle
incapable of knowing the user’s intention. In this tutorial, we
will sense from the load cell and command the servo motor to
move accordingly using a proportionalintegralderivative (PID)
controller. For more details on what a PID controller is, we
encourage you to watch/read explanation at youtube and [5]
(full systems and control book). See github code.

Note: Only the code related to the PID will defined in the
tutorial below. The code for the motor and load cell was left
for reader to figure one. Refer to the prior sections if needed.

1) Initialise the parameters and corresponding variables for
the PID controller.

1 #define K_P 0.3
2 #define K_I 0.0
3 #define K_D 0.0
4 double error, new_error, int_error, diff_error;
5 void setup() {
6 // ...
7 error = 0.0;
8 int_error = 0.0;
9 diff_error = 0.0;

10 // ...
11 }

2) The code below shows how each proportional, integral,
derivative components are calculated. The sum of the
error (deviation of actual) is fed back to pos and the
servo motor.

1 void loop() {
2 new_error = scale.get_units();
3 int_error += error;
4 diff_error = new_error - error;
5 error = new_error;
6 // proportional + integral + derivative
7 pos += K_P*error + K_I*int_error + K_D*

diff_error;
8 if(pos < MOTOR_MINPOS) pos = MOTOR_MINPOS;
9 else if(pos > MOTOR_MAXPOS) pos =

MOTOR_MAXPOS;
10 myservo.write(pos);
11 }

3) Compile and upload the code to STM32. After upload-
ing, unplug the exoarm, reconnect the motor power, and
then power the exoarm

https://github.com/lsy3/exoarm/tree/master/s02-control/motor-rotate
https://github.com/lsy3/exoarm/tree/master/s02-control/load-cell
https://www.robotshop.com/media/files/pdf/datasheet-3133.pdf
https://learn.sparkfun.com/tutorials/getting-started-with-load-cells/all
https://github.com/bogde/HX711o
https://ttssh2.osdn.jp
https://youtu.be/UR0hOmjaHp0
https://github.com/lsy3/exoarm/tree/master/s02-control/pid

4) Try moving the arm. You may feel that the exoarm is
not reacting as fast as you hope it to be. It may even
oscilate as certain times. This behavior is normal! Try
tweaking the parameters for a faster reaction time and
more stable control.

F. Challenge: Exoarm Teleoperation

We haven’t talked about it much in this section but the
exoarm also has a bluetooth attached. We challenge you to
make two exoarms to talk with each other having the slave
device imitate what the master device is doing. For more
details, see github codes master pid, slave pid, or similar
projects. See youtube video for sample demo.

1) You will need to setup the HC05 bluetooth module to
connect with each other. You may want to use github
code btpassthrough to configure the bluetooth module.

2) Enter bluetooth AT mode (configuration mode) by un-
plugging the exoarm, press and hold the bluetooth key
button, and then plug the exoarm again. The bluetooth
led should blink at 2 sec. interval when in AT mode.

3) Enter the following configuration for the slave device.
Note that you will have to enter them one by one via
serial and the bluetooth device should respond with ’OK’
for each step. When changing roles, the bluetooth device
might automatically reboot.

1 AT+RMAAD (To clear any paired devices)
2 AT+ROLE=0 (To set it as slave)
3 AT+ADDR (To get the address of this HC-05,

remember to jot the address down as it will
be used during master configuration)

4 AT+UART=38400,0,0 (To fix the baud rate at
38400)

4) Code your own or upload this code to the slave exoarm.
Note that by default, the bluetooth module buffers and
processes messages by batch (every 1 sec). To reduce
this interval, use Serial1.setTimeout(50); at setup.

5) Enter the following configuration for the master device.
1 AT+RMAAD (To clear any paired devices)
2 AT+ROLE=1 (To set it as master)
3 AT+CMODE=0 (To connect the module to the

specified Bluetooth address and this
Bluetooth address can be specified by the
binding command)

4 AT+BIND=xxxx,xx,xxxxxx (Note the commas instead
of colons given by the slave module.

5 AT+UART=38400,0,0 (To fix the baud rate at
38400)

6) Code your own or upload this code to the master exoarm.
7) Here’s a debugging tool if things are not working as

planned. github master rotate will use the master device
to send messages to the slave device to rotate the arm
from 0 to 125◦ and backwards.

IV. S03 - COMPUTER INTERACTION

In this section, we will be teaching the basics of interfacing
an exoarm and a computer using a bluetooth module. Specifi-
cally, we will model the orientation of the exoarm, and make
a game out of our input interface. Note that these games can
be used to gamify rehabilitation.

A. Install processing IDE

1) Download processing IDE from link. If using a Win-
dows 10 64 bit machine, the downloaded file will be
something like processing-3.5.3-windows64.zip. See
link for details.

2) Extract the zip file and run processing.exe.

3) Install G4P library via Sketch→ Import Library→ Add
Library.

B. Orientation Estimation

This section downloads an orientation estimation algorithm,
also known as Attitude and Heading Reference Systems
(AHRS), into the STM32. The exoarm will output the ori-
entation state as serial data both via USB and bluetooth.

1) Load basicAHRSandFB code to STM32. Make sure
SerialDebug is set to true and that the motor power
is disconnected. Note that the code was based on Kris
Winer’s MPU9250 code.

2) Power STM32 through your laptop and
connect with your favorite serial monitor. You
should see something like the figure below.

https://github.com/lsy3/exoarm/tree/master/s02-control/master-pid
https://github.com/lsy3/exoarm/tree/master/s02-control/slave-pid
https://www.instructables.com/id/How-to-Configure-HC-05-Bluetooth-Module-As-Master-/
https://www.instructables.com/id/How-to-Configure-HC-05-Bluetooth-Module-As-Master-/
https://youtu.be/Z-6SudF7elU
https://github.com/lsy3/exoarm/tree/master/s02-control/BTSerialPassthrough
https://github.com/lsy3/exoarm/tree/master/s02-control/BTSerialPassthrough
https://github.com/lsy3/exoarm/tree/master/s02-control/slave-pid
https://github.com/lsy3/exoarm/tree/master/s02-control/master-pid
https://github.com/lsy3/exoarm/tree/master/s02-control/master-rotate
https://processing.org/download/
https://processing.org/tutorials/gettingstarted/
https://github.com/lsy3/exoarm/tree/master/s03-compinter/basicAHRSandFB
https://github.com/kriswiner/MPU9250/blob/master/MPU9250BasicAHRS_t3.ino

3) Specifically, the exoarm sends serial data Orientation:

yaw, pitch, roll, elbow angle. Try moving around
the device and observe how orientation changes with
your movement.

4) Note that the code used Tait-Bryan angles to define
the orientation of the bicep. Specifically, z-y-x (intrinsic
rotations) also known as yaw, pitch and roll.

5) Now disconnect the device, connect the motor power
and power the device through an external power source.

6) Connect your PC to the bluetooth module EXOARM<ID

>. The default password is 1234. ID is written on the
exoarm label.

7) Set the COM port to the corresponding bluetooth port
and read incoming data via your favorite serial monitor.

8) By default, the code runs MadgwickQuaternionUpdate

[6]. Give MahonyQuaternionUpdate [7] a try as well
(comment out the filter you’re not using) and see if you
can distinguish any difference.

C. Bicep 3D viewer

This section aims to receive the orientation serial data from
the exoarm and model the bicep using the processing IDE.

1) Load the cuberotatebase code in processing and run. You
will see a blank box as shown below.

2) Select the corresponding serial port (whether cabled
or via bluetooth), and check the Print serial data

checkbox. If the serial communication is via bluetooth,
the bluetooth LED on the exoarm will blink slowly

(every 2 sec) if connected. You should be able to read
serial data describing the exoarm bicep orientation.

3) Let us now draw a rectangle to model the exoarm biceps
by adding the code below (see comment on where to add
the code). If you re-run processing, it should look like
the figure below.

1 // Add translation and drawing code here
2 translate(boxLength/2, 0, 0);
3 fill(0, 0, 255, 128); //blue
4 box(boxLength,2*boxWidth,boxWidth);

4) Now using the functions below, we will want to rotate
the coordinate system of our 3D model such that it is
aligned with the actual exoarm in the world frame. Do
so by systematically trying different values (yaw, pitch,
roll) as input to the rotate functions. The left handed
coordinate system of the model (processing) is shown
in the figure below.

1 // Add rotation code here
2 rotateY(radians(?));
3 rotateZ(radians(?));
4 rotateX(radians(?)); // extrinsic rotation

5) In theory, the (actual) world frame is a right handed
coordinate system as shown in the figure below. The
conversion between left to right coordinate system in-
volved multiplying a basis vector by −1, plus some fixed
offset rotation between the sensor to exoarm frame. In
this workshop, we suggested to do the trial and error
approach for simplicity :p

6) If you have the correct rotate ordering, the orientation
of the exoarm should move similarly to the exoarm
model (e.g., if you rotate the bicep to the left, the box
will also rotate to the left).

https://en.wikipedia.org/wiki/Euler_angles
https://github.com/lsy3/exoarm/tree/master/s03-compinter/cuberotatebase

7) Sample solution can be found at cuberotatebiceps github.

D. Arm 3D viewer
This section aims to extend the bicep 3D viewer by adding

in the arm.
1) We will be extending our code from the prior section

(Bicep 3D viewer). As the feature we want to achieve
starts to be become more complex, let us first define
some of the drawing functions below. See link for
processing’s 3D tutorial.

a) translate(x,y,z) translates our model point with
offset (x, y, z).

b) rotateX, rotateY, rotateZ rotate the coordinate
system along the X, Y, or Z axis.

c) box(x,y,z) draws a box centered at the point
where the model is currently at.

d) pushMatrix() pushes the current transformation
matrix onto the matrix stack. As we’ll only have
one object, unlikely to use it in this project.

2) Using a combination of translate(x,y,z), the correct
rotate function, and box(x,y,z), draw the arm at the
tip of the bicep. From better visualization, let’s color
the arm red using the code fill(255, 0, 0, 128);.
You may also choose to inspect the model that it is
correct before connecting with the exoarm via serial.
The resulting model should look like the figure below.

3) Try different exoarm orientation specially the elbow
bending and see if the model is representing it correctly.

4) Sample solution can be found at cuberotatearm github.

E. Challenge: Game interaction - Simple pong

In this section, we will be using the exoarm as a device
controller for playing a simple pong game.

1) Load the simplepongbase code in processing and run.
You will see an interface as shown below. Note that the
bar on the right is controlled by the mouse y position.

2) Modify the code (take code snippets from Arm 3D
viewer) such that the bar y position is controlled by the
elbow angle. The modification will involve the following
parts.

a) UI control for selecting the serial port. In-
volves code at void setup(), and handlers such
as void handleDropListEvents(...) and void

handleToggleControlEvents(...).
b) void setSerialPort(String portName)

c) void serialEvent(Serial p)

d) Change mouseY into a normalised elbow position.
mouseY ranges from 0 → 480 while elbow angle
ranges from 0→ 125.

3) Sample solution can be found at simplepong github.

F. Challenge: Control Exoarm via GUI v1

Modify the Arm 3D viewer GUI such that a slider panel
controls the the elbow angle of the exoarm. Note that for the
first version, the model does not display a similar orientation
as the exoarm.

1) Make a copy of your Arm 3D viewer code. We will be
working on the this copy as our base.

2) Add a GSlider into the panel
1 GSlider sliderPanel;
2

3 void setup() {
4 ...
5 sliderPanel = new GSlider(this, 5, 100, 640,

20, 20);
6 ... }

3) For simplicity, let us delete the contents of void

serialEvent(Serial p).
4) Define the GSlider handler

https://github.com/lsy3/exoarm/tree/master/s03-compinter/cuberotatebiceps
https://processing.org/tutorials/p3d/
https://github.com/lsy3/exoarm/tree/master/s03-compinter/cuberotatearm
https://github.com/lsy3/exoarm/tree/master/s03-compinter/simplepongbase
https://github.com/lsy3/exoarm/tree/master/s03-compinter/simplepong

1 public void handleSliderEvents(GValueControl
slider, GEvent event) {

2 ...
3 elbow = slider.getValueF() ...
4 ...
5 }

5) Upload this code to the slave exoarm.
6) Select the corresponding serial port in the GUI to

connect with the exoarm. Changing the slider panel
should remotely change the elbow angle of the exoarm.

7) Sample solution can be found at master cuberotatearm
github.

G. Challenge: Control Exoarm via GUI v2

Modify the Arm 3D viewer GUI such that a slider panel
controls the the elbow angle of the exoarm. Note that in
this second version, we want the model to display a similar
orientation as the exoarm.

1) Make a copy of your Control Exoarm via GUI v1 code.
We will be working on the this copy as our base.

2) Insert back the deleted void serialEvent(Serial p)

(refer to Arm 3D viewer).
3) Modify the basicAHRSandFB code such that the exoarm

sends bicep orientation state but receives elbow state.
Refer to slave pid code.

4) Check if the serial read and write events are interfering
with one another. If they do, fix accordingly.

5) To test, select the corresponding serial port in the GUI
to connect with the exoarm. Changing the slider panel
should remotely change the elbow angle of the exoarm.

6) I still don’t have a sample solution so if you successfully
done this part. Please send me the solution l.sy@unsw.

edu.au.

V. ELECTROMYOGRAPHY (EMG) CONTROL

FUTURE WORK

A. Reading signal

B. Feedback control

VI. ACKNOWLEDGEMENTS

The author would like to thank UNSW Arc (funding and
venue) and the IEEE NSW section for supporting our student
branch in this endeavour.

And the following people who helped with this workshop
and documentation:

• Han Wen, Philip Byrnes-Preston, and Ben Xia for the idea
and random questions associated in making this workshop

• Alan Ngo for Sec. III-A.
• Logan Peters for initial versions of Sec. III-B, III-C,

III-D.
• Martin Lunel Agbayani for Sec. I-D.

REFERENCES

[1] EduExo - The Robotic Exoskeleton Kit - EduExo. [Online]. Available:
https://www.eduexo.com/ (visited on 09/07/2019).

[2] The UMass ExBow: An OpenSource Kit to Teach Wearable Robotics.
[Online]. Available: http : / / www. ecs . umass . edu / exbow/ (visited on
09/07/2019).

[3] A. S. Gorgey, “Robotic exoskeletons: The current pros and cons.,”
World J. Orthop., vol. 9, no. 9, pp. 112–119, 2018. [Online]. Available:
http : / / www. ncbi . nlm . nih . gov / pubmed / 30254967 % 20http : / / www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6153133.

[4] How to program a STM32 Blue Pill with Arduino - idyl.io. [Online].
Available: https: / / idyl . io/arduino/how- to/program- stm32- blue- pill -
stm32f103c8t6/ (visited on 09/08/2019).

[5] N. S. Nise, CONTROL SYSTEMS ENGINEERING, (With CD). John
Wiley & Sons, 2007.

[6] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation
of IMU and MARG orientation using a gradient descent algorithm,”
in IEEE Int. Conf. Rehabil. Robot., IEEE, 2011, pp. 1–7. [Online].
Available: http://ieeexplore.ieee.org/document/5975346/.

[7] R. Mahony, T. Hamel, P. Morin, and E. Malis, “Nonlinear complemen-
tary filters on the special linear group,” Int. J. Control, vol. 85, no. 10,
pp. 1557–1573, 2012.

https://github.com/lsy3/exoarm/tree/master/s02-control/slave-pid
https://github.com/lsy3/exoarm/tree/master/s03-compinter/master_cuberotatearm
https://github.com/lsy3/exoarm/tree/master/s03-compinter/master_cuberotatearm
https://github.com/lsy3/exoarm/tree/master/s03-compinter/basicAHRSandFB
https://github.com/lsy3/exoarm/tree/master/s02-control/slave-pid
https://www.eduexo.com/
http://www.ecs.umass.edu/exbow/
http://www.ncbi.nlm.nih.gov/pubmed/30254967%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6153133
http://www.ncbi.nlm.nih.gov/pubmed/30254967%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6153133
https://idyl.io/arduino/how-to/program-stm32-blue-pill-stm32f103c8t6/
https://idyl.io/arduino/how-to/program-stm32-blue-pill-stm32f103c8t6/
http://ieeexplore.ieee.org/document/5975346/

	Introduction
	Why Wearable Robotics?
	State of the art
	Hardware Overview
	Why STM32 Microcontroller?

	S01 - 3D CAD Design
	Work environment setup
	Making the cuffs
	3D Printing
	Full Exo Arm Model

	S02 - uC Programming and Control
	Work environment setup
	[Optional] Blink
	Making the arm move (Motor test)
	Force sensing
	Feedback control - PID
	Challenge: Exoarm Teleoperation

	S03 - Computer interaction
	Install processing IDE
	Orientation Estimation
	Bicep 3D viewer
	Arm 3D viewer
	Challenge: Game interaction - Simple pong
	Challenge: Control Exoarm via GUI v1
	Challenge: Control Exoarm via GUI v2

	Electromyography (EMG) control
	Reading signal
	Feedback control

	Acknowledgements

