State Estimation for Robotics Tim Barbot Chapter 3 June 10, 2018 3.6.1 $x_k = x_{k-1} + v_k + w_k$ $w_k \sim N(0, Q)$ $y_k = x_k + n_k$ $n_k \sim N(0, R)$ $x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$ $x = \begin{bmatrix} x_0 \\$

$$H = \begin{bmatrix} A' \\ C \end{bmatrix} = \begin{bmatrix} + & -1 \\ -1 & -1 \end{bmatrix}$$

$$KH$$

add to 3 and we have fank KH = 6 invertible!

and the problem is solvable

3.6.2
$$H^TW^TH$$
 note $W^T = I$ as $Q = R = I$
 $= H^TH = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & 0 \\ 0 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & 0 \\ 0 & 0 & 0 & -1 & 3 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}$

Since HH = Lt we can have L=HT, I am note our of there is a better soln

See Chalesty Lecen - next page

Since the new R is still positive def, the same rules for soln uniqueness applies, namely if $rank(H^T)=K+1$ which was shown in 3.6.2 so this problem has a unique soln.

3.6.4 KF equations
$$\hat{P}_{k} = \hat{P}_{k-1} + Q \quad \text{if} \quad \hat{P}_{k} = \left(1 - \frac{\hat{P}_{k}}{\hat{P}_{k}+R}\right) \hat{P}_{k} = \frac{\hat{P}_{k}}{\hat{P}_{k}+R} \hat{P}_{k} \quad \text{if} \quad \hat{P}_{k} = \hat{P}_{k} + \hat{P}_{k}$$

Using
$$\bigcirc$$
 and \bigcirc to express the eq. as only $\stackrel{?}{R}$ and only $\stackrel{?}{R}$ sub \bigcirc in \bigcirc : $\stackrel{?}{R}$

sub
$$\emptyset$$
 in Θ : $\hat{P}_{k} = \frac{R}{\hat{p}_{k}^{2} + Q + R} \hat{P}_{k+1} + Q$
Similarly, as $k + M$, $\hat{P}_{k} = \hat{P}_{k+1}$ solet us denote \hat{P}_{k} as \hat{P}_{k}

$$\hat{P} = R(\hat{P} + Q + R)^{-1}(\hat{P} + Q)$$

$$\hat{P}^{2} + Q\hat{P} + R\hat{P}^{2} = R\hat{P}^{2} + RQ$$

$$\hat{P}^{2} + Q\hat{P} - RQ = Q$$

Solving for
$$\hat{p}$$
 and $\frac{\hat{p}}{\hat{p}}$ gives us
$$\hat{p} = \frac{Q \pm \sqrt{Q^2 + 4QR}}{2} \qquad \hat{p} = \frac{-Q \pm \sqrt{Q^2 + 4QR}}{2}$$

Note that
$$\hat{P}$$
 and \hat{P} must be positive def. (positive) which $\frac{1}{12}$ only be true for 1 of the noots of \hat{P} and \hat{P} respectively
$$\hat{p} = \frac{Q \pm Q \sqrt{1 + \frac{4R}{8}}}{2} = \frac{Q(1 \pm \sqrt{1 + 4R})}{2} \quad \text{Since } Q \text{ and } R \text{ are pos def}$$

$$\hat{p} = \frac{Q(-1 \pm \sqrt{1 + \frac{4R}{8}})}{2} \quad \text{Since } Q \text{ and } R \text{ are pos def},$$

$$\hat{p} = \frac{Q(-1 \pm \sqrt{1 + \frac{4R}{8}})}{2} \quad \text{Since } Q \text{ and } R \text{ are pos def},$$

$$\hat{p} = \frac{Q(-1 \pm \sqrt{1 + \frac{4R}{8}})}{2} \quad \text{is the only positive root}.$$

3.6.6 let
$$B = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \end{bmatrix}$$
 Show $B^{\dagger} = \begin{bmatrix} A_1 \\ A_4 \end{bmatrix}$

$$BB^{\dagger} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

3.6.7 To solve for
$$L: O(N(k+1))$$

To solve for $L^{-1}: O(N(k+1)^2)$

To solve for $L^{-1}: O(N(k+1)^2)$