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1 Differentiation of Vectors

1.1 Vector Functions

When the magnitude or direction of v is dependent on q
in frame A, v is called a function of q in A. Otherwise, we
say v is independent of q in A.

1.2 Several Reference Frames

v may be a function of q in frame A but not in frame B.

1.3 Scalar Functions

Given a reference frame A (3D)

v = v1a1 + v2a2 + v3a3 (1.1)

viai is called the ai component of v, and vi is called
the ai measure number of v.

When a1, a2, a3 are mutually perpendicular, vi =
v · ai.

v = v · a1a1 + v · a2a2 + v · a3a3 (1.2)

1.4 First Derivatives

If v is a vector function of n scalar variables q1, . . . , qn in
frame A,

Aδv

δqr
,

3∑
i=1

δvi
δqr
ai , (r = 1, . . . , n) (1.3)

1.5 Representation of Derivatives

Derivative in frame A is not necesarrily equal to derivative
in frame B.

1.6 Notation for Derivatives

No mention of reference implies (i) any frame can be used
or (ii) all the subsequent eq. are in the same frame.

1.7 Differentiation of Sums and Products

δ

δqr
v =

N∑
i=1

δvi
δqr

for (r = 1, . . . , n) (1.4)

δ

δqr
(sv) =

δs

δqr
v + s

δv

δqr
(1.5)

δ

δqr
(v ·w) =

δv

δqr
·w + v · δw

δqr
(1.6)

δ

δqr
(v ×w) =

δv

δqr
×w + v × δw

δqr
(1.7)

If P = F1F2 . . . FN , in general, (1.8)

δP

δqr
=
δF1

δqr
F2 . . . FN + · · ·+ F1F2 . . .

δFN
δqr

(1.9)

1.8 Second Derivatives

At different reference frame, order is important. At similar
reference frame, order is not important.

Bδ

δqs

Aδ

δqr
6=

Aδ

δqs

Bδ

δqr
(r, s = 1, . . . , n) (1.10)

δ

δqs

δ

δqr
=

δ

δqs

δ

δqr
(r, s = 1, . . . , n) (1.11)

1.9 Total and Partial Derivatives

Adv

dt
=

n∑
r=1

Aδv

δqr
+

Aδv

δt
(1.12)

d

dt

δv

δqr
=

δ

δqr

dv

dt
(1.13)

2 Kinematics

• 1-5 rotational motion of a rigid body.
• 6-8 translational motion of a point
• 9-13 constraints
• 14-15 partial linear and angular velocity

2.1 Angular Velocity

Though abstract, angular velocity ’s definition provides a
sound basis for the derivation of theorems used to solve
problems.

Let b1, b2, b3 form a right handed set of mutually per-
pendicular unit vectors fixed in a rigid body B moving in
a reference frame A. The angular velocity of B in A is
denoted by

AωB , b1 ·
Adb2

dt
· b3 + b2 ·

Adb3

dt
· b1 + b3 ·

Adb1

dt
· b2
(2.1)

Adβ

dt
= AωB × β (2.2)

β = any vector fixed in ref B (2.3)

2.2 Simple Angular Velocity

When a rigid body B move in frame A in such a way that
a unit vector k is independent of t in both A and B, then
B is said to have a simple angular velocity in A through-
out this time interval. Note that B need not be mounted
in A for B to have a simple angular velocity in A.

AωB = ωk (2.4)

ω , θ̇ (2.5)

2.3 Differentiation in Two Reference
Frames

Adv

dt
=

Bdv

dt
+ AωB × v (2.6)
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2.4 Auxiliary Reference Frames

Addition theorem for angular velocities.
AωB = AωA1 + A1ωA2 + · · ·+ AnωB (2.7)

Specially useful if each ω are simple angular velocity. This
has no angular acceleration counterpart.

2.5 Angular Acceleration

AαB ,
AdAωB

dt
=

BdAωB

dt
(2.8)

There is no angular acceleration counterpart for the addi-
tion theorem.

When B has a simple angular velocity in A, we have
the ff. where α is called the scalar angular acceleration.

AαB = αk (2.9)

α =
dω

dt
(2.10)

2.6 Velocity and Acceleration

AvP ,
Adp

dt
(2.11)

AaP ,
AdAvP

dt
(2.12)

2.7 Two points fixed on a Rigid Body

If P and Q are two points fixed on a rigid body B having
an angular velocity AωB in A,

AvP = AvQ + AωB × r (2.13)
AaP = AaQ + AωB × (AωB × r) + AαB × r (2.14)

r = vector from point Q to P (2.15)

2.8 One point moving on a Rigid Body

If a point P is moving on a rigid body B while B is mov-
ing in a reference frame A, then we have the ff. where
2AωB × BvP is referred as the Coriolis acceleration.

AvP = AvB̄ + BvP (2.16)
AaP = AaB̄ + BaP + 2AωB × BvP (2.17)

2.9 Configuration Constraints

If subject S is affected by other bodies (e.g., contact), it
is subject to configuration constraints.

1. Holonomic constraint equations = equations
expressing restrictions that is of the form
f(x1, y1, z1, . . . , xv, yv, zv, t) = 0.

2. Rheonomic = holomic constraint equation is DE-
PENDENT on time t.

3. Scleronomic = holomic constraint equation is NOT
DEPENDENT on time t.

2.10 Generalized Coordinates

• When a set S has v points subject to M Holonomic
constraint equations, it has n = 3v−M independent
equations.
• One can express xi, yi, zi(i = 1, . . . , v) as
q1(t), . . . , qn(t). The values of q1(t), . . . , qn(t) are
called the generalized coordinates for S in A.

2.11 Number of Generalized Coordinates

2.12 Generalized Speeds

Kinematical differential equations for S in A. Generalized
speeds can be time-derivatives of the generalized coordi-
nates and time, but this is not always the case.

ur ,
n∑
s=1

Yrsq̇s + Zr (r = 1, . . . , n) (2.18)

where Yrs and Zr are functions of q1, . . . , qn and t.

2.13 Motion Constraints
• Nonholonomic constraint equations = equations ex-

pressing motion constraints.
• If S is not subject to motion constraints, then S is

said to be a simple holonomic system possessing n
degrees of freedom in A.

• If S is subject to motion constraints, then S is said
to be a nonholonomic system.

ur ,
p∑
s=1

Ars · us +Br (r = p+ 1, . . . , n) (2.19)

p , n−m (2.20)

where Ars and Br are functions of q1, . . . , qn and t.

2.14 Partial Angular Velocities, Partial
Velocities

The angular velocity, ω, in A of rigid body B and the ve-
locity, v, in A of particle P belonging to S, can be unique
expressed as

ω =

n∑
r=1

ωrur + ωt (2.21)

v =

n∑
r=1

vrur + vt (2.22)

ω =

p∑
r=1

ω̃rur + ω̃t (2.23)

v =

p∑
r=1

ṽrur + ṽt (2.24)

ωr , (2.25)

ωt , (2.26)

vr ,
n∑
s=1

δp

δqs
Wsr, (r = 1, . . . , n) (2.27)

vt ,
n∑
s=1

δp

δqs
Xs +

δp

δt
(2.28)

ω̃r , ωr +

n∑
s=p+1

ωsAsr (2.29)

ω̃t , ωt +

n∑
r=p+1

ωrBr (2.30)

ṽr , vr +

n∑
s=p+1

vsAsr (2.31)

ṽt , vt +

n∑
r=p+1

vrBr (2.32)

where ωr, vr, ω̃r, ṽr are the rth partial holonomic
angular velocity, holonomic velocity, nonholonomic angu-
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lar velocity, nonholonomic velocity, respectively, and are
functions of q1, . . . , qn; ωt,vt, ω̃t, ṽt are functions of t.

2.15 Acceleration and Partial Velocities

vr · a =
1

2

(
d

dt

δv2

δq̇r
− δv2

δqr

)
(2.33)

vr · a =
1

2

n∑
s=1

(
d

dt

δv2

δq̇s
− δv2

δqs

)
Wsr (2.34)

ṽr · a =
1

2

(
d

dt

δv2

δq̇r
− δv2

δqr

)
+ (2.35)

1

2

n∑
s=p+1

(
d

dt

δv2

δq̇s
− δv2

δqs

)
Asr (2.36)

ṽr · a =
1

2

n∑
s=1

[(
d

dt

δv2

δq̇s
− δv2

δqs

)(
Wsr +

n∑
k=p+1

WskAkr

)]
(2.37)

3 Mass Distribution

3.1 Mass Center

Let S be a set of particles P1, . . . , Pv of masses m1, . . . ,mv,
ri be the distance between the mass center S∗ to
P1, . . . , Pv, p

∗ be the position vector from O to S∗.

v∑
i=1

miri = 0 (3.1)

p∗ =

∑v
i=1mipi∑v
i=1mi

(3.2)

3.2 Curves, Surfaces, and Solids

Let B∗ be the mass center, ρ be the mass density, dτ be
the length/area/volume of a differential element of figure
F , p be the position vector from O to P , p∗ be the position
vector from O to B∗. ∫

F

ρrdτ = 0 (3.3)

p∗ =

∫
F
ρpdτ∫

F
ρdτ

(3.4)

3.3 Inertia Vector, Inertia Scalars

Let S be a set of particles P1, . . . , Pv of masses m1, . . . ,mv,
pi be the position vector from a point O to Pi, na is a
unit vector.

• Ia = inertia vector of S relative to O for na
• Iab = inertia scalar of S relative to O for na and nb
• Ia = moment of inertia of S with respect to line La,

where La is the line passing through point O and
parallel to na. (Iaa)

Ia ,
v∑
i=1

mipi × (na × pi) (3.5)

Iab , Ia · nb = Iba (3.6)

=

v∑
i=1

mi(pi × na) · (pi × nb) (3.7)

Ia =

v∑
i=1

mi(pi × na)2 (3.8)

=

v∑
i=1

mil
2
i = mk2

a (3.9)

Ia ,
∫
F

ρp× (na × p)dτ (3.10)

Iab , Ia · nb =

∫
F

ρ(p× na) · (p× nb)dτ (3.11)

Ia =

∫
F

ρl2dτ (3.12)

3.4 Mutually Perpendicular Unit Vectors

Given inertia vectors I1, I2, I3 of a body B relative to
a point O for three mutually perpendicular unit vectors
n1,n2,n3,

Ia =

3∑
j=1

ajIj (3.13)

aj , na · nj for j = 1, 2, 3 (3.14)

Iab =

3∑
j=1

3∑
k=1

ajIjkbk (3.15)

bk , nb · nk for k = 1, 2, 3 (3.16)

3.5 Inertia Matrix, Inertia Dyadic

3.5.1 Inertia Matrix

Each inertia matrix is associated with a specific basis vec-
tor. Set S does not possess a unique inertia matrix relative
to O.

I ,

[
I11 I12 I13
I21 I22 I23
I31 I32 I33

]
(3.17)

a , [a1 a2 a3] (3.18)

b , [b1 b2 b3] (3.19)

Iab = aIbT (3.20)

3.5.2 Inertia Dyadic

Basis independent.

u = w · ab+w · cd+ . . . (3.21)

v = ab ·w + cd ·w + . . . (3.22)

Q , ab+ cd+ . . . dyadic (3.23)

u = w ·Q scalar premultiplication (3.24)

v = Q · w scalar postmultiplication (3.25)

U , a1a1 + a2a2 + a3a3 (3.26)

v = v ·U = U · v (3.27)

where a1,a2,a3 are mutually perpendicular unit vectors.
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I ,
v∑
i=1

mi(Up
2
i − pipi) (3.28)

,
∫
F

ρ(Up2 − pp)dτ (3.29)

=

3∑
j=1

Ijnj (3.30)

=

3∑
j=1

3∑
k=1

Ijknjnk (3.31)

Ia = na · I (3.32)

Iab = na · I · nb (3.33)

3.5.3 Angular Momentum

AHS/O ,
v∑
i=1

mipi × AvPi (3.34)

AHB/O = IB/O · AωB (3.35)

3.6 Parallel Axes Theorems

• Inertia dyadic IS/O of a set S of v particles relative
to a point O

• Central inertia dyadic IS/S∗

• Central inertia scalars I
S/S∗
ab and I

S/S∗
a

IS/O = IS/S∗ + IS∗/O dyadic (3.36)

IS/O = IS/S∗ + IS∗/O inertia matrix (3.37)

IS/Oa = IS/S∗a + IS∗/Oa inertia vector (3.38)

I
S/O
ab = I

S/S∗
ab + I

S∗/O
ab products of inertia (3.39)

IS/Oa = IS/S∗a + IS∗/Oa moments of inertia (3.40)

3.7 Evaluation of Inertia Scalars

1. discrete Iab

(a) by definition (eq. 3.7)
(b) central inertia scalar + parallel axis
(c) utilize inertia vector, matrix, or dyadic

2. continuous Iab

(a) use tables (Appendix I of kane dynamics)
(b) assume uniform mass + dyadic
(c) by definition is done as last resort

k =

√
dI

dM
radius of gyration (3.41)

3.8 Principal Moments of Inertia

• principal axis of S for O: line Lz passing through O
such that nz is parallel to Iz
• principal plane of S for O: plane Pz passing through
O normal to nz
• principal moment of inertia of S for O: moment of

inertia Iz with respect to Lz
• principal radius of gyration of S for O: radius of

gyration of S with respect to Lz
• if point O = S∗, then you add ‘central‘ to the name

Iz = Iznz (3.42)

I =

[
Ix 0 0
0 Iy 0
0 0 Iz

]
(3.43)

tan(2θ) =
2Iab
Ia − Ib

(3.44)

Ix, Iy =
Ia + Ib

2
±
[(

Ia − Ib
2

)
+ I2

ab

]1/2

(3.45)

3.9 Maximum and Minimum Moments of
Inertia

4 Generalized Forces

4.1 Moment about a point, bound vec-
tors, resultant

M , p× v moment of v about point P (4.1)

R ,
v∑
i=1

vi (4.2)

MS/P = MS/Q + rPQ ×R (4.3)

1. p = position vector from point P to any point on
line L

2. MS/P = sum of vi moments about point P = mo-
ment of S about P

4.2 Couples, Torque

• couple = set of bound vectors whole resultant is zero.
• simple couple = only 2 vectors in set.
• a couple has the same moment about all points.

4.3 Equivalence, Replacement

• 2 sets of bound vectors are ”equivalent” when they
have equal resultants and equal moments about one
point. either set is called a ”replacement” of the
other.

• If 2 sets are equivalent, they have equal moments
about every point.

• A set S can replaced by a set S′ consisting of T
equal to the moment of S about P and v equal to
the resultant of S.

4.4 Generalized Active Forces

If u1, . . . un are generalized speeds for a simple nonholo-
nomic system S possessing p degrees of greedom in a ref-
erence frame A,

F̃r ,
v∑
i=1

ṽPi
r ·Ri (r = 1, . . . , p) nonholonomic

(4.4)

Fr ,
v∑
i=1

vPi
r ·Ri (r = 1, . . . , n) holonomic (4.5)

F̃r = Fr +

n∑
s=p+1

FsAsr (4.6)

where v is the number of particle in set S, Pi is a
typical particle of S, ṽPi

r and vPi
r are the nonholo-

nomic/holonomic partial velocity of Pi in A, and Ri is
the resultant of all contact forces (e.g., friction) and dis-
tance forces (e.g., gravity) acting on Pi.
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4.5 Noncontributing Forces

Contribution to F̃r of:

• All contact forces exerted on particles of S across
smooth surfaces of rigid bodies vanishes.
• If B is a rigid body belonging to S, all contact and

distance forces exerted by all particles of B on each
other is equal to zero.
• When B rolls without slipping on a rigid body B′

– all contact forces exerted on B by B′ is equal
to zero if B′ is not part of S.

– all contact forces exerted by B and B′ on each
other equal to zero if B′ is part of S.

4.6 Forces Acting on a Rigid Body

If B is a rigid body belonging to a nonholonomic system
S possessing p DoF in reference frame A, and a set of con-
tact/distance forces acting on B is equivalent to a couple

of torque T and force R on point Q of B, then (F̃r)B the

contribution of this set of forces to F̃r is

(F̃r)B = Aω̃r
B · T + Aṽr

Q ·R (r = 1, · · · , p) (4.7)

4.7 Contributing Interaction Forces

There is contribution to F̃r if:

• two particles of a system are not rigidly connected
to each other, the gravitational forces exerted by the
particles on each other can make such contributions.
• bodies connected to each other by certain energy

storage or energy dissipation devices.

4.8 Terrestrial Gravitational Forces

Gi = migk (i = 1, . . . , v) (4.8)

(F̃r)γ = Mgk · ṽ∗r (4.9)

(F̃r)γ =

v∑
i=1

ṽPi
r ·Gi (4.10)

where M is the total mass of S and ṽ∗r is the rth partial
velocity of the mass center of S in A.

4.9 Bridging Noncontributing Forces into
Evidence

• Bring noncontributing force/torque of interest into
evidence through the introduction of a generalized
speed related to it.

• In effect, this permits points to have certain veloci-
ties or rigid bodies to have certain angular velocities
which they cannot possess.

• Original generalized speeds and associated general-
ized active forces remain unaltered.

4.10 Coulomb Friction Forces

4.10.1 Particle P in contact with rigid body C

C = Nv + Tτ (4.11)

|T | ≤ µN (4.12)

|T | = µN impending tangential motion (4.13)

|T | = µ′N sliding (4.14)

(4.15)

where N is nonnegative, v is the vector from C to P , τ
is perpendicular to v, µ is the coefficient of static friction,
µ′ is the coefficient of kinetic friction.

4.10.2 Rigid body B in contact with rigid body
C across area Ā

dC = (nv + tvecτ)dA (4.16)

|t| ≤ µn (4.17)

|t| = µn impending tangential motion
(4.18)

|t| = µ′n sliding (4.19)

(4.20)

where n is called the pressure at point P , t is called the
shear at P .

4.11 Generalized Inertia Forces

F̃ ∗r ,
v∑
i=1

ṽPi
r ·R

∗
i , (r = 1, . . . , p) nonholonomic

(4.21)

F ∗r ,
v∑
i=1

vPi
r ·R

∗
i , (r = 1, . . . , n) holonomic (4.22)

R∗
i , −miai, (i = 1, . . . , v) (4.23)

F̃ ∗r = F ∗r +

n∑
s=p+1

F ∗sAsr (4.24)

T ∗ , −
β∑
i=1

miri × ai (4.25)

= −AαB · IB/B∗ − AωB × IB/B∗ · AωB (4.26)

= −[α1I1 − ω2ω3(I2 − I3)]c1

− [α2I2 − ω3ω1(I3 − I1)]c2

− [α3I3 − ω1ω2(I1 − I2)]c3

(4.27)

R∗ , −Ma∗ (4.28)

(F̃ ∗r )B = Aω̃r
B · T ∗ + Aṽ∗r

B∗ ·R∗, (r = 1, · · · , p) (4.29)

5 Generalized Forces

5.1 Potential Energy

Nonholonomic (simple):

ur , q̇r (r = 1, . . . , n) (5.1)

Fr = − δV
δqr

(5.2)

0 =
δV

δt
(5.3)

Nonholonomic (general):

ur ,
n∑
s=1

Yrsq̇s + Zr (5.4)

q̇s =

n∑
r=1

Wsrur +Xs, (s = 1, . . . , n) (5.5)

Fr = −
n∑
s=1

δV

δqs
Wsr (5.6)

0 =
δV

δt
+

n∑
s=1

δV

δqs
Xs (5.7)

V̇ = −
n∑
r=1

Frur (5.8)

δ

δqs

δV

δqr
=

δ

δqr

δV

δqs
(5.9)
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Holonomic (simple):

ur , q̇r (r = 1, . . . , n) (5.10)

q̇k =

p∑
r=1

Ckr q̇r +Dk, (k = p+ 1, . . . , n) (5.11)

F̃r = −(
δV

δqr
+

n∑
s=p+1

δV

δqs
Csr), (r = 1, . . . , p) (5.12)

0 =
δV

δt
+

n∑
k=p+1

δV

δqs
Ds (5.13)

(5.14)

Holonomic (general):

uk ,
p∑
r=1

Akrur +Bk, (k = p+ 1, . . . , n) (5.15)

q̇k =

p∑
r=1

Ckr q̇r +Dk, (k = p+ 1, . . . , n) (5.16)

F̃r = −
n∑
s=1

δV

δqs
(Wsr +

n∑
k=p+1

WskAkr, (r = 1, . . . , p)

(5.17)

0 =
δV

δt
+

n∑
s=1

δV

δqs
(Xs +

n∑
k=p+1

WsrBr) (5.18)

V̇ = −
n∑
r=1

F̃rur (5.19)

Solving for V:

1. fs−p ,
δV
δqs

for s = p+ 1, . . . , n.

2. Replace
δV
δqs

with fs−p.

3. Form
δ
δqj

δV
δqr

4. Rearrange to ZX = Y where X =[
δf1
δq1

. . .
δf1
δqn

. . .
δfm
δq1

. . .
δfm
δqn

]
5. Get Reduced Row Echelon Form
6. Infer V
7. Substitute fs−p into

δV
δq1

. . .
δV
δqs

5.2 Potential Energy Contributions

V , Vα + Vβ + . . . (5.20)

Vγ , −Mgk · p∗ gravity (5.21)

Vσ ,
∫ x

0

f(ζ)dζ spring (general) (5.22)

=
1

2
kx2 linear spring (5.23)

5.3 Dissipation Functions

F is called a dissipation function for set C.

(F̃r)C = − δF

δur
(5.24)

5.4 Kinetic Energy

• KB = constribution of rigid body B to K of set S.
• Kω = rotational kinetic energy of B in A.
• Kv = translational kinetic energy of B in A.

K ,
1

2

v∑
i=1

mi(v
Pi)2 (5.25)

KB = Kω +Kv (5.26)

Kω =
1

2
ω · I · ω (5.27)

=
1

2
Iω2 (5.28)

=
1

2

3∑
j=1

3∑
i=1

ωjIjkωk (5.29)

=
1

2

3∑
j=1

Ijω
2
j (5.30)

Kv =
1

2
mv2 (5.31)

(5.32)

5.5 Homogeneous Kinetic Energy Func-
tions

K = K0 +K1 +K2 (5.33)

K2 =
1

2

p∑
r=1

p∑
s=1

mrsurus (5.34)

mrs ,
v∑
i=1

miṽr
Pi ṽs

Pi , (r, s = 1, . . . , p) (5.35)

= msr (5.36)

5.6 Kinetic Energy and Generalized Iner-
tia Forces

K̇2 − K̇0 = −
p∑
r=1

F̃ ∗r ur (5.37)

is satisfied iff.

v∑
i=1

miv
Pi · ˙̃v

Pi
= 0 (5.38)

OR

δK

δt
+

n∑
s=1

δK

δqs

(
Xs +

n∑
r=p+1

WsrBr

)
= 0 (5.39)

δ

δt

(
Xs +

n∑
r=p+1

WsrBr

)
= 0, (s = 1, . . . , n)

(5.40)

δXs

δt
+

n∑
k=1

δWsk

δt
uk =

δXs

δqr
+

n∑
k=1

δWsk

δqr
uk = 0, (r, s = 1, . . . , n)

(5.41)

If K is function of q1, . . . , qn and q̇1, . . . , q̇n, then

F̃ ∗r = −
n∑
s=1

(
d

dt

δK

δq̇s
− δK

δqs

)Wsr +

n∑
k=p+1

WskAkr


(5.42)

F ∗r = −
n∑
s=1

(
d

dt

δK

δq̇s
− δK

δqs

)
Wsr (5.43)
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If ur = q̇r,

F̃ ∗r = −

[
d

dt

δK

δq̇r
− δK

δqr
+

n∑
s=p+1

(
d

dt

δK

δq̇s
− δK

δqs

)
Csr

]
(5.44)

F ∗r =

(
d

dt

δK

δq̇r
− δK

δqr

)
(5.45)
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