Dynamics: Theory and Applications - Kane

Luke Sy

November 2017

Differentiation of Vectors

1.1 Vector Functions

When the magnitude or direction of v is dependent on qin frame A, v is called a function of q in A. Otherwise, we say v is independent of q in A.

1.2Several Reference Frames

 \boldsymbol{v} may be a function of q in frame A but not in frame B.

1.3 Scalar Functions

Given a reference frame A (3D)

$$v = v_1 a_1 + v_2 a_2 + v_3 a_3 \tag{1.1}$$

 $v_i \boldsymbol{a_i}$ is called the $\boldsymbol{a_i}$ component of \boldsymbol{v} , and v_i is called the a_i measure number of v.

When a_1 , a_2 , a_3 are mutually perpendicular, $v_i =$ $v \cdot a_i$.

$$v = v \cdot a_1 a_1 + v \cdot a_2 a_2 + v \cdot a_3 a_3 \tag{1.2}$$

First Derivatives

If v is a vector function of n scalar variables q_1, \ldots, q_n in frame A,

$$\frac{{}^{A}\delta\boldsymbol{v}}{\delta q_{r}} \triangleq \sum_{i=1}^{3} \frac{\delta v_{i}}{\delta q_{r}} \boldsymbol{a_{i}} \qquad , (r=1,\ldots,n)$$
 (1.3)

Representation of Derivatives

Derivative in frame A is not necessarily equal to derivative in frame B.

1.6 **Notation for Derivatives**

No mention of reference implies (i) any frame can be used or (ii) all the subsequent eq. are in the same frame.

Differentiation of Sums and Products 1.7

$$\frac{\delta}{\delta q_r} v = \sum_{i=1}^{N} \frac{\delta v_i}{\delta q_r} \text{ for } (r = 1, \dots, n)$$
 (1.4)

$$\frac{\delta}{\delta q_r}(s\mathbf{v}) = \frac{\delta s}{\delta q_r}\mathbf{v} + s\frac{\delta \mathbf{v}}{\delta q_r} \tag{1.5}$$

$$\frac{\delta}{\delta q_r}(\boldsymbol{v} \cdot \boldsymbol{w}) = \frac{\delta \boldsymbol{v}}{\delta q_r} \cdot \boldsymbol{w} + \boldsymbol{v} \cdot \frac{\delta \boldsymbol{w}}{\delta q_r}$$
(1.6)

$$\frac{\delta}{\delta q_r}(\boldsymbol{v} \times \boldsymbol{w}) = \frac{\delta \boldsymbol{v}}{\delta q_r} \times \boldsymbol{w} + \boldsymbol{v} \times \frac{\delta \boldsymbol{w}}{\delta q_r}$$
(1.7)

If
$$P = F_1 F_2 \dots F_N$$
, in general, (1.8)

$$\frac{\delta P}{\delta q_r} = \frac{\delta F_1}{\delta q_r} F_2 \dots F_N + \dots + F_1 F_2 \dots \frac{\delta F_N}{\delta q_r} \quad (1.9)$$

Second Derivatives 1.8

At different reference frame, order is important. At similar reference frame, order is not important.

$$\frac{B_{\delta}}{\delta q_s} \frac{A_{\delta}}{\delta q_r} \neq \frac{A_{\delta}}{\delta q_s} \frac{B_{\delta}}{\delta q_r} \qquad (r, s = 1, ..., n) \qquad (1.10)$$

$$\frac{\delta}{\delta q_s} \frac{\delta}{\delta q_r} = \frac{\delta}{\delta q_s} \frac{\delta}{\delta q_r} \qquad (r, s = 1, ..., n) \qquad (1.11)$$

$$\frac{\delta}{\delta q_s} \frac{\delta}{\delta q_r} = \frac{\delta}{\delta q_s} \frac{\delta}{\delta q_r} \qquad (r, s = 1, \dots, n)$$
 (1.11)

Total and Partial Derivatives

$$\frac{{}^{A}d\boldsymbol{v}}{dt} = \sum_{r=1}^{n} \frac{{}^{A}\delta\boldsymbol{v}}{\delta q_{r}} + \frac{{}^{A}\delta\boldsymbol{v}}{\delta t}$$
 (1.12)

$$\frac{d}{dt}\frac{\delta \mathbf{v}}{\delta q_r} = \frac{\delta}{\delta q_r}\frac{d\mathbf{v}}{dt} \tag{1.13}$$

Kinematics

- 1-5 rotational motion of a rigid body.
- 6-8 translational motion of a point
- 9-13 constraints
- 14-15 partial linear and angular velocity

2.1Angular Velocity

Though abstract, angular velocity's definition provides a sound basis for the derivation of theorems used to solve

Let b_1 , b_2 , b_3 form a right handed set of mutually perpendicular unit vectors fixed in a rigid body B moving in a reference frame A. The angular velocity of B in A is

$${}^{A}\boldsymbol{\omega}^{B} \triangleq \boldsymbol{b_{1}} \cdot \frac{{}^{A}d\mathbf{b_{2}}}{dt} \cdot \boldsymbol{b_{3}} + \boldsymbol{b_{2}} \cdot \frac{{}^{A}d\mathbf{b_{3}}}{dt} \cdot \boldsymbol{b_{1}} + \boldsymbol{b_{3}} \cdot \frac{{}^{A}d\mathbf{b_{1}}}{dt} \cdot \boldsymbol{b_{2}}$$

$$(2.1)$$

$$\frac{{}^{A}d\beta}{dt} = {}^{A}\boldsymbol{\omega}^{B} \times \boldsymbol{\beta} \tag{2.2}$$

$$\beta = \text{ any vector fixed in ref } B$$
 (2.3)

Simple Angular Velocity 2.2

When a rigid body B move in frame A in such a way that a unit vector k is independent of t in both A and B, then B is said to have a simple angular velocity in A throughout this time interval. Note that B need not be mounted in A for B to have a simple angular velocity in A.

$${}^{A}\boldsymbol{\omega}^{B} = \omega \boldsymbol{k} \tag{2.4}$$

$$\omega \triangleq \dot{\theta} \tag{2.5}$$

Differentiation in Frames Two Reference

$$\frac{{}^{A}d\mathbf{v}}{dt} = \frac{{}^{B}d\mathbf{v}}{dt} + {}^{A}\boldsymbol{\omega}^{B} \times \boldsymbol{v}$$
 (2.6)

2.4 Auxiliary Reference Frames

Addition theorem for angular velocities.

$${}^{A}\boldsymbol{\omega}^{B} = {}^{A}\boldsymbol{\omega}^{A_{1}} + {}^{A_{1}}\boldsymbol{\omega}^{A_{2}} + \dots + {}^{A_{n}}\boldsymbol{\omega}^{B}$$
 (2.7)

Specially useful if each ω are simple angular velocity. This has no angular acceleration counterpart.

2.5 Angular Acceleration

$$^{A}\boldsymbol{\alpha}^{B} \triangleq \frac{^{A}d^{A}\boldsymbol{\omega}^{\mathbf{B}}}{dt} = \frac{^{B}d^{A}\boldsymbol{\omega}^{\mathbf{B}}}{dt}$$
 (2.8)

There is no angular acceleration counterpart for the addition theorem

When B has a simple angular velocity in A, we have the ff. where α is called the scalar angular acceleration.

$${}^{A}\boldsymbol{\alpha}^{B} = \alpha \boldsymbol{k} \tag{2.9}$$

$$\alpha = \frac{d\omega}{dt} \tag{2.10}$$

2.6 Velocity and Acceleration

$$^{A}\mathbf{v}^{P} \triangleq \frac{^{A}d\mathbf{p}}{dt}$$
 (2.11)

$${}^{A}\boldsymbol{a}^{P} \triangleq \frac{{}^{A}\boldsymbol{d}^{A}\boldsymbol{v}^{\mathbf{P}}}{dt} \tag{2.12}$$

2.7 Two points fixed on a Rigid Body

If P and Q are two points fixed on a rigid body B having an angular velocity ${}^A\omega^B$ in A,

$${}^{A}\boldsymbol{v}^{P} = {}^{A}\boldsymbol{v}^{Q} + {}^{A}\boldsymbol{\omega}^{B} \times \boldsymbol{r} \tag{2.13}$$

$${}^{A}\boldsymbol{a}^{P} = {}^{A}\boldsymbol{a}^{Q} + {}^{A}\boldsymbol{\omega}^{B} \times ({}^{A}\boldsymbol{\omega}^{B} \times \boldsymbol{r}) + {}^{A}\boldsymbol{\alpha}^{B} \times \boldsymbol{r}$$
 (2.14)

$$r = \text{vector from point Q to P}$$
 (2.15)

2.8 One point moving on a Rigid Body

If a point P is moving on a rigid body B while B is moving in a reference frame A, then we have the ff. where $2^A \omega^B \times^B v^P$ is referred as the Coriolis acceleration.

$${}^{A}\boldsymbol{v}^{P} = {}^{A}\boldsymbol{v}^{\bar{B}} + {}^{B}\boldsymbol{v}^{P} \tag{2.16}$$

$${}^{A}\boldsymbol{a}^{P} = {}^{A}\boldsymbol{a}^{\bar{B}} + {}^{B}\boldsymbol{a}^{P} + 2{}^{A}\boldsymbol{\omega}^{B} \times {}^{B}\boldsymbol{v}^{P}$$
(2.17)

2.9 Configuration Constraints

If subject S is affected by other bodies (e.g., contact), it is subject to configuration constraints.

- 1. Holonomic constraint equations = equations expressing restrictions that is of the form $f(x_1, y_1, z_1, \dots, x_v, y_v, z_v, t) = 0$.
- 2. Rheonomic = holomic constraint equation is DE-
- PENDENT on time t.

 3. Scleronomic = holomic constraint equation is NOT DEPENDENT on time t.

2.10 Generalized Coordinates

- When a set S has v points subject to M Holonomic constraint equations, it has n=3v-M independent equations.
- One can express $x_i, y_i, z_i (i = 1, ..., v)$ as $q_1(t), ..., q_n(t)$. The values of $q_1(t), ..., q_n(t)$ are called the generalized coordinates for S in A.

2.11 Number of Generalized Coordinates

2.12 Generalized Speeds

Kinematical differential equations for S in A. Generalized speeds can be time-derivatives of the generalized coordinates and time, but this is not always the case.

$$u_r \triangleq \sum_{s=1}^{n} Y_{rs} \dot{q}_s + Z_r \qquad (r = 1, \dots, n)$$
 (2.18)

where Y_{rs} and Z_r are functions of q_1, \ldots, q_n and t.

2.13 Motion Constraints

- Nonholonomic constraint equations = equations expressing motion constraints.
- If S is not subject to motion constraints, then S is said to be a simple holonomic system possessing n degrees of freedom in A.
- If S is subject to motion constraints, then S is said to be a nonholonomic system.

$$u_r \triangleq \sum_{s=1}^{p} A_{rs} \cdot u_s + B_r \qquad (r = p + 1, \dots, n)$$
 (2.19)

$$p \triangleq n - m \tag{2.20}$$

where A_{rs} and B_r are functions of q_1, \ldots, q_n and t.

2.14 Partial Angular Velocities, Partial Velocities

The angular velocity, ω , in A of rigid body B and the velocity, v, in A of particle P belonging to S, can be unique expressed as

$$\boldsymbol{\omega} = \sum_{r=1}^{n} \boldsymbol{\omega}_r u_r + \boldsymbol{\omega}_t \tag{2.21}$$

$$v = \sum_{r=1}^{n} v_r u_r + v_t \tag{2.22}$$

$$\omega = \sum_{r=1}^{p} \tilde{\omega}_r u_r + \tilde{\omega}_t \tag{2.23}$$

$$\boldsymbol{v} = \sum_{r=1}^{p} \tilde{\boldsymbol{v}}_r u_r + \tilde{\boldsymbol{v}}_t \tag{2.24}$$

$$\omega_r \triangleq$$
 (2.25)

$$\omega_t \triangleq (2.26)$$

$$\boldsymbol{v_r} \triangleq \sum_{r=1}^{n} \frac{\delta \boldsymbol{p}}{\delta q_s} W_{sr}, (r = 1, \dots, n)$$
 (2.27)

$$\boldsymbol{v_t} \triangleq \sum_{s=1}^{n} \frac{\delta \boldsymbol{p}}{\delta q_s} X_s + \frac{\delta \boldsymbol{p}}{\delta t}$$
 (2.28)

$$\tilde{\boldsymbol{\omega}}_{r} \triangleq \boldsymbol{\omega}_{r} + \sum_{s=p+1}^{n} \boldsymbol{\omega}_{s} A_{sr}$$
 (2.29)

$$\tilde{\omega}_{t} \triangleq \omega_{t} + \sum_{r=n+1}^{n} \omega_{r} B_{r}$$
 (2.30)

$$\tilde{\boldsymbol{v}}_{r} \triangleq \boldsymbol{v}_{r} + \sum_{s=p+1}^{n} \boldsymbol{v}_{s} A_{sr}$$
 (2.31)

$$\tilde{\boldsymbol{v}}_{t} \triangleq \boldsymbol{v}_{t} + \sum_{r=n+1}^{n} \boldsymbol{v}_{r} B_{r} \tag{2.32}$$

where $\boldsymbol{\omega}_r$, \boldsymbol{v}_r , $\tilde{\boldsymbol{\omega}}_r$, $\tilde{\boldsymbol{v}}_r$ are the r^{th} partial holonomic angular velocity, holonomic velocity, nonholonomic angu-

lar velocity, nonholonomic velocity, respectively, and are functions of q_1, \ldots, q_n ; $\boldsymbol{\omega}_t, \boldsymbol{v}_t, \, \tilde{\boldsymbol{\omega}}_t, \, \tilde{\boldsymbol{v}}_t$ are functions of t.

2.15 Acceleration and Partial Velocities

$$\boldsymbol{v}_r \cdot \boldsymbol{a} = \frac{1}{2} \left(\frac{d}{dt} \frac{\delta \boldsymbol{v^2}}{\delta \dot{q}_r} - \frac{\delta \boldsymbol{v^2}}{\delta q_r} \right)$$
 (2.33)

$$\boldsymbol{v}_r \cdot \boldsymbol{a} = \frac{1}{2} \sum_{s=1}^n \left(\frac{d}{dt} \frac{\delta \boldsymbol{v}^2}{\delta \dot{q}_s} - \frac{\delta \boldsymbol{v}^2}{\delta q_s} \right) W_{sr}$$
 (2.34)

$$\tilde{\boldsymbol{v}}_r \cdot \boldsymbol{a} = \frac{1}{2} \left(\frac{d}{dt} \frac{\delta \boldsymbol{v^2}}{\delta \dot{q}_r} - \frac{\delta \boldsymbol{v^2}}{\delta q_r} \right) + \tag{2.35}$$

$$\frac{1}{2} \sum_{s=p+1}^{n} \left(\frac{d}{dt} \frac{\delta \mathbf{v}^2}{\delta \dot{q}_s} - \frac{\delta \mathbf{v}^2}{\delta q_s} \right) A_{sr}$$
 (2.36)

$$\tilde{\boldsymbol{v}}_r \cdot \boldsymbol{a} = \frac{1}{2} \sum_{s=1}^n \left[\left(\frac{d}{dt} \frac{\delta \boldsymbol{v}^2}{\delta \dot{q}_s} - \frac{\delta \boldsymbol{v}^2}{\delta q_s} \right) \left(W_{sr} + \sum_{k=p+1}^n W_{sk} A_{kr} \right) \right]$$
(2.37)

3 Mass Distribution

3.1 Mass Center

Let S be a set of particles P_1, \ldots, P_v of masses m_1, \ldots, m_v , $\boldsymbol{r_i}$ be the distance between the mass center S^* to P_1, \ldots, P_v , \boldsymbol{p}^* be the position vector from O to S^* .

$$\sum_{i=1}^{v} m_i \mathbf{r_i} = 0 \tag{3.1}$$

$$\mathbf{p}^* = \frac{\sum_{i=1}^{v} m_i \mathbf{p}_i}{\sum_{i=1}^{v} m_i}$$
 (3.2)

3.2Curves, Surfaces, and Solids

Let B^* be the mass center, ρ be the mass density, $d\tau$ be the length/area/volume of a differential element of figure F, p be the position vector from O to P, p^* be the position vector from O to B^* .

$$\int_{E} \rho \mathbf{r} d\tau = 0 \tag{3.3}$$

$$\mathbf{p}^* = \frac{\int_F \rho \mathbf{p} d\tau}{\int_F \rho d\tau} \tag{3.4}$$

Inertia Vector, Inertia Scalars 3.3

Let S be a set of particles P_1, \ldots, P_v of masses m_1, \ldots, m_v , p_i be the position vector from a point O to P_i , n_a is a unit vector.

- I_a = inertia vector of S relative to O for n_a
 I_{ab} = inertia scalar of S relative to O for n_a and n_b
 I_a = moment of inertia of S with respect to line L_a, where L_a is the line passing through point O and parallel to n_a . (I_{aa})

$$I_{a} \triangleq \sum_{i=1}^{v} m_{i} p_{i} \times (n_{a} \times p_{i})$$
 (3.5)

$$I_{ab} \triangleq \mathbf{I_a} \cdot \mathbf{n_b} = I_{ba} \tag{3.6}$$

$$= \sum_{i=1}^{v} m_i (\boldsymbol{p_i} \times \boldsymbol{n_a}) \cdot (\boldsymbol{p_i} \times \boldsymbol{n_b})$$
 (3.7)

$$I_a = \sum_{i=1}^{v} m_i (\boldsymbol{p_i} \times \boldsymbol{n_a})^2$$
 (3.8)

$$=\sum_{i=1}^{v} m_i l_i^2 = m k_a^2 \tag{3.9}$$

$$I_{a} \triangleq \int_{F} \rho p \times (n_{a} \times p) d\tau$$
 (3.10)

$$I_{ab} \triangleq I_a \cdot n_b = \int_{F} \rho(p \times n_a) \cdot (p \times n_b) d\tau$$
 (3.11)

$$I_a = \int_{F} \rho l^2 d\tau \tag{3.12}$$

Mutually Perpendicular Unit Vectors

Given inertia vectors I_1, I_2, I_3 of a body B relative to a point O for three mutually perpendicular unit vectors n_1, n_2, n_3 ,

$$\boldsymbol{I_a} = \sum_{j=1}^{3} a_j \boldsymbol{I_j} \tag{3.13}$$

$$a_j \triangleq \boldsymbol{n_a} \cdot \boldsymbol{n_j} \text{ for } j = 1, 2, 3$$
 (3.14)

$$I_{ab} = \sum_{j=1}^{3} \sum_{k=1}^{3} a_j I_{jk} b_k \tag{3.15}$$

$$b_k \triangleq \boldsymbol{n_b} \cdot \boldsymbol{n_k} \text{ for } k = 1, 2, 3$$
 (3.16)

Inertia Matrix, Inertia Dyadic 3.5

3.5.1 Inertia Matrix

Each inertia matrix is associated with a specific basis vector. Set S does not possess a unique inertia matrix relative

$$I \triangleq \begin{bmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{bmatrix}$$
 (3.17)

$$a \triangleq \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \tag{3.18}$$

$$b \triangleq \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} \tag{3.19}$$

$$I_{ab} = aIb^T (3.20)$$

3.5.2Inertia Dyadic

Basis independent.

$$u = w \cdot ab + w \cdot cd + \dots \tag{3.21}$$

$$v = ab \cdot w + cd \cdot w + \dots \tag{3.22}$$

$$\mathbf{Q} \triangleq \mathbf{ab} + \mathbf{cd} + \dots \text{ dyadic} \tag{3.23}$$

$$\boldsymbol{u} = \boldsymbol{w} \cdot \boldsymbol{Q}$$
 scalar premultiplication (3.24)

$$\mathbf{v} = \mathbf{Q} \cdot \mathbf{w} \text{ scalar postmultiplication}$$
 (3.25)

$$U \triangleq a_1 a_1 + a_2 a_2 + a_3 a_3 \tag{3.26}$$

$$\boldsymbol{v} = \boldsymbol{v} \cdot \boldsymbol{U} = \boldsymbol{U} \cdot \boldsymbol{v} \tag{3.27}$$

where a_1, a_2, a_3 are mutually perpendicular unit vectors.

$$\boldsymbol{I} \triangleq \sum_{i=1}^{v} m_i (\boldsymbol{U} \boldsymbol{p}_i^2 - \boldsymbol{p}_i \boldsymbol{p}_i)$$
 (3.28)

$$\triangleq \int_{\mathbf{F}} \rho(\mathbf{U}\mathbf{p}^2 - \mathbf{p}\mathbf{p}) d\tau \tag{3.29}$$

$$=\sum_{j=1}^{3} \mathbf{I}_{j} \mathbf{n}_{j} \tag{3.30}$$

$$=\sum_{j=1}^{3}\sum_{k=1}^{3}I_{jk}n_{j}n_{k}$$
 (3.31)

$$I_a = n_a \cdot I \tag{3.32}$$

$$I_{ab} = \boldsymbol{n_a} \cdot \boldsymbol{I} \cdot \boldsymbol{n_b} \tag{3.33}$$

3.5.3Angular Momentum

$${}^{A}\boldsymbol{H}^{S/O} \triangleq \sum_{i=1}^{v} m_{i}\boldsymbol{p_{i}} \times {}^{A}\boldsymbol{v}^{P_{i}}$$
 (3.34)

$${}^{A}\boldsymbol{H}^{B/O} = \boldsymbol{I}^{B/O} \cdot {}^{A}\boldsymbol{\omega}^{B} \tag{3.35}$$

Parallel Axes Theorems

- Inertia dvadic $\boldsymbol{I}^{S/O}$ of a set S of v particles relative to a point O
- Central inertia dyadic $\boldsymbol{I}^{S/S*}$
- \bullet Central inertia scalars $I_{ab}^{S/S*}$ and $I_a^{S/S*}$

$$\mathbf{I}^{S/O} = \mathbf{I}^{S/S*} + \mathbf{I}^{S*/O} \text{ dyadic}$$
 (3.36)

$$I^{S/O} = I^{S/S*} + I^{S*/O} \text{ inertia matrix}$$
 (3.37)

$$I_a^{S/O} = I_a^{S/S*} + I_a^{S*/O}$$
 inertia vector (3.38)

$$I_{ab}^{S/O} = I_{ab}^{S/S*} + I_{ab}^{S*/O}$$
 products of inertia (3.39)
 $I_{ab}^{S/O} = I_{ab}^{S/S*} + I_{ab}^{S*/O}$ moments of inertia (3.40)

$$I_{ab}^{S/O} = I_{ab}^{S/S*} + I_{ab}^{S*/O} \text{ products of inertia}$$
 (3.39)

$$I_a^{S/O} = I_a^{S/S*} + I_a^{S*/O}$$
 moments of inertia (3.40)

Evaluation of Inertia Scalars 3.7

- 1. discrete I_{ab}
 - (a) by definition (eq. 3.7)
 - (b) central inertia scalar + parallel axis
 - (c) utilize inertia vector, matrix, or dvadic
- 2. continuous I_{ab}
 - (a) use tables (Appendix I of kane dynamics)
 - (b) assume uniform mass + dvadic
 - (c) by definition is done as last resort

$$k = \sqrt{\frac{dI}{dM}}$$
 radius of gyration (3.41)

Principal Moments of Inertia 3.8

- principal axis of S for O: line L_z passing through O such that n_z is parallel to I_z
- principal plane of S for O: plane P_z passing through O normal to n_z
- principal moment of inertia of S for O: moment of inertia I_z with respect to L_z
- principal radius of gyration of S for O: radius of
- gyration of S with respect to L_z if point $O = S^*$, then you add 'central' to the name

$$I_z = I_z n_z \tag{3.42}$$

$$I = \begin{bmatrix} I_x & 0 & 0 \\ 0 & I_y & 0 \\ 0 & 0 & I_z \end{bmatrix}$$
 (3.43)

$$\tan(2\theta) = \frac{2I_{ab}}{I_a - I_b} \tag{3.44}$$

$$I_x, I_y = \frac{I_a + I_b}{2} \pm \left[\left(\frac{I_a - I_b}{2} \right) + I_{ab}^2 \right]^{1/2}$$
 (3.45)

Maximum and Minimum Moments of

Generalized Forces

4.1 Moment about a point, bound vectors, resultant

$$M \triangleq p \times v$$
 moment of v about point P (4.1)

$$R \stackrel{\triangle}{=} \sum_{i=1}^{v} v_{i}$$

$$M^{S/P} = M^{S/Q} + r^{PQ} \times R$$

$$(4.2)$$

$$M^{S/P} = M^{S/Q} + r^{PQ} \times R \tag{4.3}$$

- p = position vector from point P to any point on line L
 M^{S/P} = sum of v_i moments about point P = mo-
- ment of S about P

4.2 Couples, Torque

- couple = set of bound vectors whole resultant is zero.
- simple couple = only 2 vectors in set.
- a couple has the same moment about all points.

Equivalence, Replacement

- 2 sets of bound vectors are "equivalent" when they have equal resultants and equal moments about one point. either set is called a "replacement" of the
- other.
 If 2 sets are equivalent, they have equal moments about every point.
- A set S can replaced by a set S' consisting of Tequal to the moment of S about P and v equal to the resultant of S.

4.4 Generalized Active Forces

If $u_1, \ldots u_n$ are generalized speeds for a simple nonholonomic system S possessing p degrees of greedom in a reference frame A,

$$\tilde{F}_r \triangleq \sum_{i=1}^v \tilde{v}_r^{P_i} \cdot R_i$$
 $(r = 1, ..., p)$ nonholonomic (4.4)

$$F_r \triangleq \sum_{i=1}^{v} \boldsymbol{v_r^{P_i}} \cdot \boldsymbol{R_i}$$
 $(r = 1, \dots, n) \text{ holonomic}$ (4.5)

$$\tilde{F}_r = F_r + \sum_{s=p+1}^n F_s A_{sr} \tag{4.6}$$

where v is the number of particle in set S, P_i is a typical particle of S, $\tilde{\boldsymbol{v}}_{r}^{P_i}$ and $\boldsymbol{v}_{r}^{P_i}$ are the nonholonomic/holonomic partial velocity of P_i in A, and \boldsymbol{R}_i is the resultant of all contact forces (e.g., friction) and distance forces (e.g., gravity) acting on P_i .

4.5 Noncontributing Forces

Contribution to \tilde{F}_r of:

• All contact forces exerted on particles of S across smooth surfaces of rigid bodies vanishes.

• If B is a rigid body belonging to S, all contact and distance forces exerted by all particles of B on each other is equal to zero.

• When B rolls without slipping on a rigid body B'

- all contact forces exerted on B by B' is equal to zero if B' is not part of S.

- all contact forces exerted by B and B' on each other equal to zero if B' is part of S.

4.6 Forces Acting on a Rigid Body

If B is a rigid body belonging to a nonholonomic system S possessing p DoF in reference frame A, and a set of contact/distance forces acting on B is equivalent to a couple of torque T and force R on point Q of B, then $(\tilde{F}_r)_B$ the contribution of this set of forces to \tilde{F}_r is

$$(\tilde{F}_r)_B = {}^A \tilde{\boldsymbol{\omega}_r}^B \cdot \boldsymbol{T} + {}^A \tilde{\boldsymbol{v}_r}^Q \cdot \boldsymbol{R} \quad (r = 1, \dots, p)$$
 (4.7)

4.7 Contributing Interaction Forces

There is contribution to \tilde{F}_r if:

- two particles of a system are not rigidly connected to each other, the gravitational forces exerted by the particles on each other can make such contributions.
- bodies connected to each other by certain energy storage or energy dissipation devices.

4.8 Terrestrial Gravitational Forces

$$G_i = m_i g k \qquad (i = 1, \dots, v) \tag{4.8}$$

$$(\tilde{F}_r)_{\gamma} = Mg\mathbf{k} \cdot \tilde{\mathbf{v}}_r^* \tag{4.9}$$

$$(\tilde{F}_r)_{\gamma} = \sum_{i=1}^{v} \tilde{v}_r^{P_i} \cdot G_i \tag{4.10}$$

where M is the total mass of S and \tilde{v}_r^* is the rth partial velocity of the mass center of S in A.

4.9 Bridging Noncontributing Forces into Evidence

- Bring noncontributing force/torque of interest into evidence through the introduction of a generalized speed related to it.
- In effect, this permits points to have certain velocities or rigid bodies to have certain angular velocities which they cannot possess.
- Original generalized speeds and associated generalized active forces remain unaltered.

4.10 Coulomb Friction Forces

 μ' is the coefficient of kinetic friction.

4.10.1 Particle P in contact with rigid body C

$$C = Nv + T\tau \tag{4.11}$$

$$|T| \le \mu N \tag{4.12}$$

$$|T| = \mu N$$
 impending tangential motion (4.13)

$$|T| = \mu' N \qquad \text{sliding} \tag{4.14}$$

where N is nonnegative, \boldsymbol{v} is the vector from C to P, $\boldsymbol{\tau}$ is perpendicular to \boldsymbol{v} , μ is the coefficient of static friction,

4.10.2 Rigid body B in contact with rigid body C across area \bar{A}

$$d\mathbf{C} = (n\mathbf{v} + tvec\tau)dA \tag{4.16}$$

$$|t| \le \mu n \tag{4.17}$$

$$|t| = \mu n$$
 impending tangential motion (4.18)

$$|t| = \mu' n$$
 sliding (4.19)

(4.20)

where n is called the pressure at point P, t is called the shear at P.

4.11 Generalized Inertia Forces

$$\tilde{F}_r^* \triangleq \sum_{i=1}^v \tilde{v}_r^{P_i} \cdot R_i^*, (r=1,\ldots,p)$$
 nonholonomic

(4.21)

$$F_r^* \triangleq \sum_{i=1}^v \boldsymbol{v_r^{P_i}} \cdot \boldsymbol{R_i^*}, (r = 1, \dots, n) \text{ holonomic}$$
 (4.22)

$$\boldsymbol{R_i^*} \triangleq -m_i \boldsymbol{a_i}, (i = 1, \dots, v) \tag{4.23}$$

$$\tilde{F}_r^* = F_r^* + \sum_{s=p+1}^n F_s^* A_{sr} \tag{4.24}$$

$$T^* \triangleq -\sum_{i=1}^{\beta} m_i r_i \times a_i$$
 (4.25)

$$= -{}^{A}\boldsymbol{\alpha}^{B} \cdot \boldsymbol{I}^{B/B*} - {}^{A}\boldsymbol{\omega}^{B} \times \boldsymbol{I}^{B/B*} \cdot {}^{A}\boldsymbol{\omega}^{B} \quad (4.26)$$

$$= -[\alpha_1 I_1 - \omega_2 \omega_3 (I_2 - I_3)] \boldsymbol{c_1}$$

$$- \left[\alpha_2 I_2 - \omega_3 \omega_1 (I_3 - I_1) \right] \mathbf{c_2}$$

$$- \left[\alpha_3 I_3 - \omega_1 \omega_2 (I_1 - I_2) \right] \mathbf{c_3}$$
(4.27)

$$\mathbf{R}^* \triangleq -M\mathbf{a}^* \tag{4.28}$$

$$(\tilde{F}_r^*)_B = {}^A \tilde{\omega}_r{}^B \cdot T^* + {}^A \tilde{v}_r^{*B*} \cdot R^*, (r = 1, \dots, p) (4.29)$$

5 Generalized Forces

5.1 Potential Energy

Nonholonomic (simple):

$$u_r \triangleq \dot{q_r} \ (r = 1, \dots, n) \tag{5.1}$$

$$F_r = -\frac{\delta V}{\delta q_r} \tag{5.2}$$

$$0 = \frac{\delta V}{\delta t} \tag{5.3}$$

Nonholonomic (general):

$$u_r \triangleq \sum_{s=1}^n Y_{rs} \dot{q}_s + Z_r \tag{5.4}$$

$$\dot{q_s} = \sum_{r=1}^{n} W_{sr} u_r + X_s, (s = 1, \dots, n)$$
 (5.5)

$$F_r = -\sum_{s=1}^n \frac{\delta V}{\delta q_s} W_{sr} \tag{5.6}$$

$$0 = \frac{\delta V}{\delta t} + \sum_{s=1}^{n} \frac{\delta V}{\delta q_s} X_s \tag{5.7}$$

$$\dot{V} = -\sum_{r=1}^{n} F_r u_r \tag{5.8}$$

$$\frac{\delta}{\delta q_s} \frac{\delta V}{\delta q_r} = \frac{\delta}{\delta q_r} \frac{\delta V}{\delta q_s} \tag{5.9}$$

Holonomic (simple):

$$u_r \triangleq \dot{q}_r \ (r = 1, \dots, n) \tag{5.10}$$

$$\dot{q_k} = \sum_{r=1}^p C_{kr} \dot{q_r} + D_k, (k = p + 1, \dots, n)$$
 (5.11)

$$\tilde{F}_r = -\left(\frac{\delta V}{\delta q_r} + \sum_{s=p+1}^n \frac{\delta V}{\delta q_s} C_{sr}\right), (r = 1, \dots, p)$$
 (5.12)

$$0 = \frac{\delta V}{\delta t} + \sum_{k=p+1}^{n} \frac{\delta V}{\delta q_s} D_s \tag{5.13}$$

(5.14)

5.5

Holonomic (general):

$$u_k \triangleq \sum_{r=1}^{p} A_{kr} u_r + B_k, (k = p + 1, \dots, n)$$
 (5.15)

$$\dot{q_k} = \sum_{r=1}^p C_{kr} \dot{q_r} + D_k, (k = p + 1, \dots, n)$$
 (5.16)

$$\tilde{F}_r = -\sum_{s=1}^n \frac{\delta V}{\delta q_s} (W_{sr} + \sum_{k=p+1}^n W_{sk} A_{kr}, (r = 1, \dots, p))$$
(5.17)

$$0 = \frac{\delta V}{\delta t} + \sum_{s=1}^{n} \frac{\delta V}{\delta q_s} (X_s + \sum_{k=p+1}^{n} W_{sr} B_r)$$
 (5.18)

$$\dot{V} = -\sum_{r=1}^{n} \tilde{F}_r u_r \tag{5.19}$$

Solving for V:

- 1. $f_{s-p} \triangleq \frac{\delta V}{\delta q_s}$ for $s = p+1, \ldots, n$. 2. Replace $\frac{\delta V}{\delta q_s}$ with f_{s-p} . 3. Form $\frac{\delta}{\delta q_j} \frac{\delta V}{\delta q_r}$ 4. Rearrange to ZX = Y where $X = \begin{bmatrix} \frac{\delta f_1}{\delta q_1} & \dots & \frac{\delta f_1}{\delta q_n} & \dots & \frac{\delta f_m}{\delta q_1} \\ \end{bmatrix}$ 5. Get Reduced Row Echelon Form 6. Infer V7. Substitute $f = \frac{\delta V}{\delta q_s} \frac{\delta V}{\delta V}$

- 7. Substitute f_{s-p} into $\frac{\delta V}{\delta q_1} \dots \frac{\delta V}{\delta q_s}$

Kinetic Energy and Generalized Inertia Forces

 $m_{rs} \triangleq \sum_{i=1}^{v} m_{i} \tilde{\boldsymbol{v_r}}^{\boldsymbol{P_i}} \tilde{\boldsymbol{v_s}}^{\boldsymbol{P_i}}, (r, s = 1, \dots, p)$

 $K = K_0 + K_1 + K_2$

 $K_2 = \frac{1}{2} \sum_{p} \sum_{r} m_{rs} u_r u_s$

 $K \triangleq \frac{1}{2} \sum_{i=1}^{v} m_i(\boldsymbol{v}^{P_i})^2$

 $=\frac{1}{2}\sum_{j=1}^{3}\sum_{k=1}^{3}\omega_{j}I_{jk}\omega_{k}$

Homogeneous Kinetic Energy Func-

 $=\frac{1}{2}\sum_{i=1}^{3}I_{j}\omega_{j}^{2}$

 $K_v = \frac{1}{2}m\mathbf{v}^2$

 $K_B = K_\omega + K_v$

 $K_{\omega} = \frac{1}{2} \boldsymbol{\omega} \cdot \boldsymbol{I} \cdot \boldsymbol{\omega}$

 $=\frac{1}{2}I\omega^2$

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.38)

$$\dot{K}_2 - \dot{K}_0 = -\sum_{r=1}^p \tilde{F}_r^* u_r \tag{5.37}$$

is satisfied iff.

5.2Potential Energy Contributions

$$V \triangleq V_{\alpha} + V_{\beta} + \dots \tag{5.20}$$

$$V_{\alpha} \triangleq -Mq\mathbf{k} \cdot \mathbf{p}^* \text{ gravity}$$
 (5.21)

$$V_{\sigma} \triangleq \int_{0}^{x} f(\zeta)d\zeta \text{ spring (general)}$$
 (5.22)

$$= \frac{1}{2}kx^2 \text{ linear spring}$$
 (5.23)

$\frac{\delta K}{\delta t} + \sum_{s=1}^{n} \frac{\delta K}{\delta q_s} \left(X_s + \sum_{s=1}^{n} W_{sr} B_r \right) = 0$

 $\sum_{i=1}^{v} m_i v^{P_i} \cdot \dot{\tilde{v}}^{P_i} = 0$

$$\frac{\delta}{\delta t} \left(X_s + \sum_{r=p+1}^n W_{sr} B_r \right) = 0, (s = 1, \dots, n)$$
(5.40)

$$\frac{\delta X_s}{\delta t} + \sum_{k=1}^n \frac{\delta W_{sk}}{\delta t} u_k = \frac{\delta X_s}{\delta qr} + \sum_{k=1}^n \frac{\delta W_{sk}}{\delta q_r} u_k = 0, (r, s = 1, \dots, n)$$
(5.41)

If K is function of q_1, \ldots, q_n and $\dot{q}_1, \ldots, \dot{q}_n$, then

$$\tilde{F}_r^* = -\sum_{s=1}^n \left(\frac{d}{dt} \frac{\delta K}{\delta \dot{q}_s} - \frac{\delta K}{\delta q_s} \right) \left(W_{sr} + \sum_{k=p+1}^n W_{sk} A_{kr} \right)$$
(5.42)

$$F_r^* = -\sum_{s=1}^n \left(\frac{d}{dt} \frac{\delta K}{\delta \dot{q}_s} - \frac{\delta K}{\delta q_s} \right) W_{sr}$$
 (5.43)

Dissipation Functions

 \mathcal{F} is called a dissipation function for set C.

$$(\tilde{F}_r)_C = -\frac{\delta \mathcal{F}}{\delta u_r} \tag{5.24}$$

Kinetic Energy

- $K_B=$ constribution of rigid body B to K of set S. $K_\omega=$ rotational kinetic energy of B in A. $K_v=$ translational kinetic energy of B in A.

If
$$u_r = \dot{q}_r$$
,
$$\tilde{F}_r^* = -\left[\frac{d}{dt}\frac{\delta K}{\delta \dot{q}_r} - \frac{\delta K}{\delta q_r} + \sum_{s=p+1}^n \left(\frac{d}{dt}\frac{\delta K}{\delta \dot{q}_s} - \frac{\delta K}{\delta q_s}\right)C_{sr}\right]$$

$$(5.44)$$

$$F_r^* = \left(\frac{d}{dt}\frac{\delta K}{\delta \dot{q}_r} - \frac{\delta K}{\delta q_r}\right)$$

$$(5.45)$$