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This is my personal attempt to the "digest" or "solve the end chapter problems in" the book
"Simon, Dan. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John
Wiley & Sons, 2006". This document is by no means a perfect solution manual for the said book,
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1 Linear Systems Theory
1.4 Find the partial derivative of the trace of AB with respect to A.

Tr(AB) = BT

1.5 Consider the matrix A =

[
a b
b c

]
. Recall that the eigenvalues of A are found by find

the roots of the polynomial P (λ) = |λI −A|. Show that P (A) = 0.

P (λ) =

[
λ− a b
b λ− c

]
= λ2 − (a+ c)λ+ ac− b2

P (A) = A2 − (a+ c)A+ (ac− b)2I

=

[
a2 + b2 ab+ bc
ab+ bc b2 + c2

]
−
[
a2 + ac ab+ bc
ab+ bc ac+ c2

]
+

[
ac− b2 0

0 ac− b2
]

=

[
0 0
0 0

]

1.6 Suppose that A is invertible and
[
A A
B A

] [
A
C

]
=

[
0
I

]
, Find B and C in terms of A

[Lie67].

A2 +AC = 0 (1.1)

AC = −A2 (1.2)
C = −A (1.3)

BA+AC = I (1.4)
BA−AA = I (1.5)

B −A = A−1 (1.6)

B = A+A−1 (1.7)
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1.8 Consider the matrix A =

[
a b
b c

]
where a, b, and c are real, and a and c are

nonnegative.

a) Compute the solutions of the characteristic polynomial of A to prove that the eigenvalues of A
are real.

P (λ) = λ2 − (a+ c)λ+ ac− b2

λ =
(a+ c)±

√
(a+ c)2 − 4(ac− b2)

2

=
(a+ c)±

√
(a− c)2 + b2

2

The value inside sqrt will always be positive, therefore λ will always be real.
b) For what values of b is A positive semidefinite?

xTAx ≥ 0

x21a+ 2x1x2b+ x22c ≥ 0

b ≥ −(x21a+ x22c)

2x1x2

1.10 Suppose that the matrix A has eigenvalues λi, and eigenvectors vi (i = 1, . . . , n).
What are the eigenvalues and eigenvectors of −A?

A can be diagonalized as SΛS−1. Consequently, −A can be expressed as S(−Λ)S−1, where we can
observe that −A has the same eigenvectors as A, but with all its eigenvalues multiplied by −1.

1.11 Show that |eAt| = e|A|t for any square matrix A.

|eAt| = |Q| ∗ |eÂt| ∗ |Q−1|

=

∣∣∣∣∣∣∣
eÂ11t

. . .
eÂnnt

∣∣∣∣∣∣∣
= eÂ11t+···+Ânnt = eTr(A)t

I can show this, but I can’t show |eAt| = e|A|t.

1.12 Show that if Ȧ = BA, then d|A|
dt = Tr(B)|A|.

Let A = F (t), with zero input, we can obtain F (t) = eBtF (0).

|F (t)| = |eBt||F (0)|
= eTr(B)t|F (0)|

d|F (t)|
dt

= Tr(B)eTr(B)t|F (0)|

= Tr(B)|F (t)|
d|A|
dt

= Tr(B)|A|
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1.13 The linear position p of an object under constant acceleration is p = po + ṗt+ 1
2 p̈t

2

where p0 is the initial position of the object.

a) Define a state vector as x =
[
p ṗ p̈

]T and write the state space equation ẋ = Ax for this

system.

 ṗp̈...
p

 =

0 1 0
0 0 1
0 0 0

pṗ
p̈


b) Use all three expressions in Equation (1.71) to find the state transition matrix eAt for the

system. I’ll only use the first one. Note that A3 = 0.

eAt = I +At/1! +A2t2/2!

=

1 t t2/2
0 1 t
0 0 1


c) Prove for the state transition matrix found above that eA0 = I. Direct subtition from the obtain
eAt above does give us I.

1.14 Consider the following system matrix. A =

[
1 0
0 −1

]
. Show that S(t) =

[
et 0
0 2e−t

]
satisfies the relation Ṡ(t) = AS(t), but S(t) is not the state transition matrix of the
system.

Ṡ(t) =

[
et 0
0 −2e−t

]
= A ∗ S(t)

eAt = QeÂtQ−1

= I ∗
[
et 0
0 e−t

]
∗ I

1.16 Show (H,F ) is an observable matrix pair if and only if (H,F−1) is observable
(assuming that F is nonsingular).

Note: Rank(AB) = min(Rank(A), Rank(B)) Let the observability matrix of (H,F−1) be G, then
the observability matrix of (H,F ) is GFn−1 (and some row swapping which should not affect rank).
Assuming F must be rank n, then Rank(GFn−1) = min(n, n) = n.
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