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This is my personal attempt to the "digest" or "solve
the end chapter problems in" the book "Simon, Dan.
Optimal state estimation: Kalman, H infinity, and non-
linear approaches. John Wiley & Sons, 2006". This
document is by no means a perfect solution manual for
the said book, but was written simple for my personal
enrichment.

1 Linear Systems Theory

1.1 Matrix Algebra and Matrix Calcu-
lus

Significance: most if not all optimal state estimation are
formulated with matrices.

1.1.1 Matrix Algebra

Transpose: AT

Hermitian: A” (complex conjugate + transpose)

HPHT = Dok H,; P HF

Determinant: |A]

Al = 325 (=1)" Ayl AGI)|

Al = 370 (—1)"H Ay | AU

|AB| = |A]|B|

Al = ILZ, A

Trace: Tr(A) = sum of its eigenvalues

Tr(ea) = ||o]3

Positive definite (z7 Az > 0), Positive semidefinite

(T Az > 0), Negative definite (27 Az < 0), Neg-

ative semidefinite (7 Az < 0), Indefinite. For all

(non zero) n x 1 vector x.

o Weighted 2 Norm [|z][3) =v/z7 Qu

e Eigenvalues A;: transformation from 1 vector
space to itself

e If A=n xn, Ahas n eigenvalues.

e Singular values o: transformation from 1 vector
space to a different vector space

e If A=n xm, A has min(n, m) singular values.

o 02(A) = A(ATA) = A\(AAT)

1.1.2 Matrix Inversion Lemma

Purpose: reduce computational effort of matrix inveri-
son if you already know A and A~!, and the change in
A is only in a certain location.

Given

[t 2

, we have the ff. formulas:

(A-BD'C) ' =A '+ A4 'B(D-CA'B) ' cA!

(1.1)
A B _ _
’C D‘ = |A||D - CA™'B|=|D||A - BD~'C]|
(1.2)
1.1.3 Matrix Calculus
With respect to scalar ¢
An(t) .. A
Aty=1 + .. (1.3)
d .
— (A =-A714A7! 1.4
S(ah (1)
where A = m X n matrix, and ¢ is scalar.
With respect to vector z (or y)
% = [0f/6x1 6f /02 (1.5)
5($Ty) T
= 1.
5 y (1.6)
T
5@; W) _ T (L.7)
Y
T
(MTAQC) =zTAT + 27 A (1.8)
x
5(Ax) 52T A)
= = A 1.
oz oz (1.9)
(591/5(E1 591/§xn
% _ : : : (1.10)
Sx : B : '
597,1/61’1 6gm/5xn
5g" _ 4y sg\"
-~ - 2 (2 1.11
dr 0T <5x (L11)
5g” _0g

where f(x) is a function, A is a n x n matrix, z,y are
n x 1 vectors, and g(z) = [g1(z) ... gm(x)]T

With respect to matrix A

5f/An 5f/Awn
0A " "
0T (ABAT) _ ABT + AB (1.14)

0A



1.2 Linear Systems

Many process in our world can be described by state-
space systems. If we can derive a mathematical model
for a process, then we can use the tools of mathematics
to control the process and obtain information about the
process.

General Form:
T = Ax + Buy = Cx

where A is called system matrix, B is input matrix, and
C' is output matrix.

Solution (always works even if A, B,C is scalar,
matrix, or vector):

t
z(t) = eAt0) () —|—/ eA=7) Bu(r)dr
" (1.15)

y(t) = Cu(t)
where the integral part goes to zero on "zero input

case".

et properties (this is also referred to as state
transition matrix)

et = i (4! (1.16)

e
T {(sI—A)_l} (1.17)
= QeMQ! (1.18)
ieAt = AeM =M A (1.19)
dt
et 0
M= (1.20)
0 ... eAm
e~ At = Qe AtQ! (1.21)

where () matrix’ columns comprise the eigenvectors
of A, and A is the Jordan form of A.

1.3 Nonlinear Systems

General Form:

&= f(z,u,w)
Y= h(z,v)

Linear Approximation using Taylor Series

n k
Dif = (Zw 2 ) f(x)‘ (1.22)
i=1 ¢ z

f(z) = f(z)+DLf + %D§f+... (1.23)
~ f(z)+ Az (1.24)

where T is the nominal operating point and £ = x — .

Approximated General Form:

- . - (1.25)
y=CZ+ Dv
Whereﬁ):wandﬁzubecausew:@:O,A:g—i ,
#
_ of _ of _ Sh _ Sh
B—H_7L—WN,C—E~,andA—%_.
x xr x x

1.4 Discretization

base equation (source of general form)

At
w(ty) = eAAti(fk—ﬁ + €AAt/ eandozBu(tk_l)
0

(1.26)
At
/ e Ao = [ — e 42 A? (1.27)
0
where At = ¢, —tp_1 and a =7 — t5,_1.
Discrete General Form:

T = Fr17p-1 + Gr_1ugp—1
Fl_q = e8! (1.28)
kal _ eAAt[I o efAAt]Ale

1.5 Simulation

i) = alta)+ [ Flalt). ().

n

1.5.1 Rectangular Integration / Euler Integra-
tion (error = O(T))

B(tan) ~ 2lta) + fle(),u(), 0T (1.29)
1.5.2 Trapezoidal Integration (error = O(7?))

Axy = fla(tn), u(tn), ta]T
Axo = f[l‘(tn) + A:cl,u(tnﬂ),th]T (130)

1
Z(tpt1) = x(tn) + 5 (Azq + Axs)

1.5.3 Runge Kutta Integration (4th order) (er-
ror = O(T*) or O(T"))

Az, = f[x(tk)vq“L(tk)vtk]T

Azy = fla(ty) + Az1/2, u(trr1/2), thrayalT

Azg = flz(te) + Az2/2, ultyia/2) trgrye]T
[(tk)

+ Axs, u(tig1), te)T

1
T(tn1) = x(ty) + 8 (Azxy + 2Axo + 2Az3 + Axy)
(1.31)



LTI Continuous-time, System

LTI Discrete-time

General = Ax + Bu rr = Frp_1 + Gui_q
Equation y=Cx yr = Haxy,
x(t) = exp(At)z(0) xy, = Ak
Marginal If the state x(¢) is bounded for all ¢ and for all | If the state z is bounded for all k£ and for all
/ bounded initial states z(0). bounded initial states .
Lya- If and only if lim; . exp(At) < M < oo for | If and only if limy_,o, A¥ < M < oo for some
punov some constant matrix M. constant matrix M.
Stability If and only if one of the ff. conditions holds. If and only if one of the ff. conditions holds.
1. All of the eigenvalues of A have negative real | 1. All of the eigenvalues of A have magnitude
parts. less than one.
2. All of the eigenvalues of A have negative or | 2. All of the eigenvalues of A have magnitude
zero real parts, and those with real parts equal | less than or equal to one, and those with magni-
to zero have a geometric multiplicity equal to | tude equal to one have a geometric multiplicity
their algebraic multiplicity. That is, the Jordan | equal to their algebraic multiplicity. That is,
blocks that are associated with the eigenvalues | the Jordan blocks that are associated with the
that have real parts equal to zero are first order. | eigenvalues that have magnitude equal to one
are first order.
A . | If, for all bounded initial states x(0), | If limy_ o 2 = O for all bounded initial states
symptotic | ..
Stability limn 00 2(£) = 0. Zo- —
If and only if lim;_, o, exp(At) =0 If and only if limy_ ., AF = 0.
If and only if all of the eigenvalues of A have | If and only if all of the eigenvalues of A have
negative real parts. magnitude less than one.
If for any initial state 2(0) and any final time | If for any initial state o and some final time k
Controllable | ¢ > 0 there exists a control that transfers the | there exists a control that transfers the state to
state to any desired value at time t. any desired value at time k.
The n-state system has the controllability ma- | The n-state system has the controllability ma-
trix P defined by P = [B AB A”_lB] . | trix P defined by P = [G FG F"‘lG] .
The system is controllable if and only if | The system is controllable if and only if
rank(P) = n. rank(P) = n.
If and only if the controllability grammian de- | If and only if the controllability grammian de-
fined by j;f eATBBTeA T dr is positive definite | fined by Zfzo AF=iBBT(AT)F~1is positive def-
for some t € (0, 00). inite for some k € (0, 00).
If and only if the differential Lyapunov equa- | If and only if the difference Lyapunov equation
tion W(0) = 0 and W = WAT + AW + BBT | Wy =0 and Wiy1 = FW,;FT + GGT has a pos-
has a positive definite solution W (t) for some | itive definite solution W}, for some k € (0, c0).
t € (0,00). This is also called a Sylvester equa- | This is also called a Stein equation.
tion.
If for any initial state z(0) and any final time | If for any initial state 2y and some final time &
Observable | t > 0 the initial state 2(0) can be uniquely de- | the initial state xy can be uniquely determined

termined by knowledge of the input u(7) and
output y(7) for all 7 € [0, 1].

by knowledge of the input u; and output y; for
all i € [0, k.

The n-state system has the observability matrix
Q defined by Q = [C CA can17.
The system is observable if and only if
rank(Q) = n.

The n-state system has the observability matrix
Q defined by Q = [H HF arm1)"
The system 1is observable if and only if
rank(Q) = n.

If and only if the observability grammian de-
fined by fg eA TCTCeATdr is positive definite
for some ¢ € (0, 00).

If and only if the observability grammian de-
fined by S-F (FT) HTHF' is positive definite
for some k € (0, 00).

If and only if the differential Lyapunov equa-
tion W(t) =0 and —W = WA+ ATW + CTC
has a positive definite solution W (r) for some
7 € (0,t). This is also called a Sylvester equa-
tion.

If and only if the difference Lyapunov equation
Wi, =0and W, = FTWZ-HF-i—HTH has a pos-
itive definite solution Wy for some k € (0, 00).
This is also called a Stein equation.

Table 1: Stability, Controlability, and Observability




1.6 Stability, Controllability, and Ob-
servability

Linear Time Invariant (LTT). Refer to table 1.

Stabilizability and Detectability

The modes of a system are all of the decoupled states
after the system is transformed into Jordan form. Given

= Ax + Buy = Cx + Du
and
M = [1}1 .. Un]
(note that M is guaranteed to be invertible),
=M"'AMz+M"'B
= AZ + Bu
y=CMZz+ Du
=Cz+ Du

(1.32)

e If a system is controllable or stable, then it is also
stabilizable. If a system is uncontrollable or un-
stable, then it is stabilizable if its uncontrollable
modes are stable.

e If a system is observable or stable, then it is also
detectable. If a system is unobservable or unsta-
ble, then it is detectable if its unobservable modes
are stable.

2 Probability Theory

2.1 Probability

(Z) N (nn;c)'k' (2.1)

_ # of times A occurs

P(4) = total # of outcomes aprior! (2.2)
P(A|B) = P](;?’B?) aposteriori (2.3)

_ P(B|A)P(A)
“Trm @
(2.5)

If A and B are independent:

P(A,B) = P(A) x P(B) (2.6)
P(A|B) = P(4) (2.7)
P(BJA) = P(B) (2.8)

2.2 Random Variables (RV)
2.2.1 Probability Distribution Function

Fx(z)=P(X <x)
Fx(z) € [0,1]
FX(—oo) =0
Fy(oo) = 1 (2.9)
Fx(a) < Fx()ifa<b
Pla <z <b)=Fx(b) — Fx(a)

2.2.2 Probability Density Function

fx(x) = dFC)l(x(x)
Fx(x) = /_x fx (@)dx
fx(@) >0 (2.10)
/_ fx(@)de =1
b
Pla<z<b)= / fx (z)dx
Q(z) =1—- Fx(z)
=P(X >x) (210
Chapman Kolmogorov: (2.12)

flri|ze, xs, 4] flw2, w3]24] = fl1, 22, T3|24]

2.2.3 ith Moment and Central Moment

Elg()] = | T @) fx@)dr (2.13)

— 00
(2.14)
= B(2?) — z* (2.15)
=02 (2.16)
z~ (Z,0%) (2.17)
ith moment of x = E(x") (2.18)
ith central moment of = E[(z — Z)’] (2.19)
skew = 3rd central moment (2.20)
skewness = skew /o> (2.21)
Uniform RV:
1
_ =T € [a’ b] (222)
Ix(@) { 0, otherwise
2.2.4 Gaussian or Normal RV
1 —(z— )2
= 2.2
fX(x) O\/%exp |: 202 :l ( 3)
x ~ N(z,0%) (2.24)
I —(z)Q}
Fxo(z) = — ex dz 2.25
x0(z) J2r /_OO p [ B ( )
1 * —(z—2)?
F = — —_— 2.2
xo) = = [ _ew { 207 } oo
— Fxo (x - x) (2.27)
o
~1_ { 1 } exp(—x?/2)
(1-a)z+a/22+0b V2r
for x > 0,a = 0.339,b = 5.510
(2.28)

If fx(x) is odd, odd ith moment =0



2.3 Transformations of RV

Y =g(X)
X =g 4X)=hY) (2.29)
P(X € [z,x+dz]) = P(Y € [y, y + dy])
Iy (y) = [N ()| fx[My)] (2.30)

=3 fxlw)/lg' @)
i (2.31)

where g() is non-monotonic

2.4 Multiple RV
)
)
F(oo,00) =1 (2.32)
)
)

d2FXY(xu y)
dxdy

F(z,y) = /_” /_y f(z1, z2)dz1dz

Pla<z<bec<y<d)

- / ' / " flevy)drdy

Marginal Density Function:

flz) = /_OO [z, y)dy (2.34)

Ifxy(z,y) =

(2.33)

fly) = /_Oo f(x,y)dx

Bl = [ [ swpreis @)

Cxy = E[(z — z)(y — )] Covariance  (2.36)
=EB(XY)- XY (2.37)
= COxy Correlation coefficient  (2.38)

OxXO0y
Rxy = E(XY) Correlation (2.39)
2.4.1 Statistical Independence
P(X<z,Y<y)=PX <z)P(Y <y) for all z,y

Fxy(z,y) = Fx(z)Fy (y)

fay(2,y) = fx () fy (y)
(2.40)
Rxy = E(X)E(Y) (2.41)
E(X+Y) =E(X)+ E(Y) (2.42)

e Central Limit Theorem - sum of independent RVs
tend toward a gaussian RV.

e Correlation coefficient p = 0 if X and Y are inde-
pendent.

e Rxy = 0 means 2 RVs are orthogonal.

2.4.2 Multivariate Statistics

Rxy = E(XYT) (2.43)
E(X1Y1) E(X1Yn)
= : : (2.44)
E(X,Y1) ... E(X,Y,)
Cxy = E[(X = X)(Y —=Y)] 2.45
= B(XYT) - XyT 2.46)
Rx = E[XXT] (2.47)
Rx = R% (2.48)
2TRxz = E[(27X)?] > 0 for all 2 (2.49)
Cx = E[(X - X)(X - X)] (2.50)
o2 ... o2,
= : : (2.51)
o Ton
Cx =C% (2.52)
2TCxz >0 for all z (positive semidefinite)  (2.53)
Gaussian:
F(X) = nl ~exp —(z — i‘)TC;(I(LE —I)
(2m)=|Cx|? 2
(2.54)
GivenY = Az + b (2.55)
y ~ N(AZ + b, ACx AT) (2.56)

2.5 Stochastic Process

Stochastic process - RV X that changes with time. It
can be a combition of 1) continuous OR discrete sig-
nal and 2) continuous (process) OR discrete (sequence)
time.

2.5.1 Definition

1st Order:
Fx(a,t) = P(X(t) < )
- de(ZU,t)
flat) = dzy...dx,
e 2.
T = / xf(x,t)dx (2:57)
Cxlt) = [ o= a®)lz - 2] f(z)da
2nd Order:
Fx(z1,22,t1,t2) = P(X(t1) < 21, X (t2) < 29)
_ dFx(x1,%2,11,12) (2.58)
flar,xa,t1,t2) = drrdiy
Autocorrelation:
Rx(t1,t2) = E[X(t1)X (t2)7] (2.59)
Autocovariance:

Cx (t1,t2) = E{[X (t1) — X (t2)][X (t2) — X (t2)]"}
(2.60)



2.5.2 Stationary

E[X(t)] = (2.61)

E[X(t1)X (t2)"] = Rx (t2 —t) (2.62)

e Strict Sense Stationary - pdf does not change w/
time.

e Wide Sense Stationary - satisfies the 2 eq. above,
but is not Strict Sense Stationary.

Wide Sense Stationary Eq:

Rx(0) = E[X ()X (1)"] (2.63)
Rx(=7) = Rx(7) (2.64)
|Rx(7)| < Rx(0) for scalar (2.65)

2.5.3 Another Representation

Time Average of z(t):

Time Autocorrelation:
RIX(t),7] = AIX()X(t 4+ 7)7] (2.67)

Ergodic Process:

Multiple Process:

Rxy(ti,t2) = BIX(t1)Y (t2)"] (2.70)

Oxy (t1,t2) = E{[X(t:1) = X(t2)][Y (t2) = Y (t2)]"}
(2.71)

Rxy (t1,t2) = E[X(t1)]E[Y (t2)] if uncorrelated
(2.72)

2.6 White Noise and Colored Noise
2.6.1 Definition

e White noise - x(¢1) is uncorrelated w/ x(t3) for all

t # to.
e Colored noise - otherwise

:/OO f(t)e 3“tdt (2.73)
FF(W)] = % /_ " F(w)e (2.74)

2.6.2 Wiener Khintchine Relation

Power Density Spectrum / Power Spectral Density:

Sx(w) = F[Rx(7)] (2.75)
Rx(T) = y_l[SX(w)] (2.76)

1 o0
Power Px = o [w Sx (w)dw (2.77)
Sxy(w) = y[ny(T)] (2.78)

2.6.3 White Noise Properties

1, ifk=0
Kronecker 0, = {O, otherwise (2.79)
Rx (k) = o6y, (2.80)
Sx (w) = Rx (0) (2.81)
Rx(7) = Rx(0)é(7) (2.82)

2.7 Simulating Correlated Noise

1. Find the eigenvalues u?,...,u2 and eigenvectors
D =[dy...d,] from covariance matrix Q.

2. Compute v where v; = u;r; and r; is an indepen-
dent RV with o2 = 1.

3. Compute w = Dv and return w.

3 Least Squares Estimation

3.1 Estimation of a constant

y=Hx+wv
y=Hz (3.1)
€, =y— Ht

Minimize egey by deriving wrt to & and equating to 0.

ey =(y— Hi) (y — Hi) (3.
=yTy—a"H"y —y"Hi+3"H"Hi (3.
0=—2y"H+2:"H'H (3.
&= (HTH)*HTy (3.

W W w W
U o b

)
)
)
)

3.2 Weighted Least Squares Estimation

0‘% ... 0

R=1: - (3.6)
0 J,%

J=¢ R

&= (H"R'H)'HTR™ Yy (3.8)

Z was derived by minimizing J.
3.3 Recursive Least Squares Estimation

Yr = Hpx + vy, (3.9)
Ty = &p—1 + Ky (Y — Hpp—1) .

K, is called "Estimator gain matrix". y,— HgZp_1 is
called "correction term". y; and & are called "unbiased
estimator".

1. Initialize 29 = E[X] and Py = E[(z—20)(z—20)T.
If no knowledge, Py = ool. If perfect knowledge,
Py =0.

2. For k=1,2,...



e Obtain y; where vy is zero mean vector w/
covariance Rj. Note E[v;ug] = Rx0k—i
(white noise).

e Update the ff. equations

—1

Ky, = Py H (H, Py HY + Ry,) (3.10)

= P.HIR! (3.11)

Ep = Zp1 + Ki (yp — Hpdp—1) (3.12)
Py = (I — KyHy) Pooy (I — KpHy)' + Ky R K]

(3.13)

= (I — KxHy) Py—1 sub K}, opt (3.14)

1 ..
matrix inv lemma

(3.15)

= [Py + HI R, H]

3.4 Wiener Filtering

LTT filter to extract a signal from noise, approaching the
problem from the frequency domain perspective.

// (ot 7—)drdy  (3.16)

Sy(w G(w)Sz(w) (3.17)

v(t)

LTI System X1
x(t) ) iy eft)
+

Figure 3.2 Wiener filter representation.

B(w) = [1 — G)]X () — G(w)V (@) (3.18)
Se(w) =[1 = GW)][1 = G(~w)] S (w) — G(w)G(~w)Sy(w)
(3.19)
_ % / S (w)dew (3.20)

3.4.1 Parametric Filter Optimization
Assuming G(w) is a first order low pass filter with BW

%, we have G(w) = ﬁ Suppose S, (w) and S, (w)
are as follows, we have Top:

2023

Se(w) = e (3.21)
Sp(w)=A (3.22)
sqrid (3.23)

Tom = 2B — VA

3.4.2 General Filter Optimization

Use calculus of variation to differentiate and minimize
Ee?(t)):

Ele2(t)] = Ela*(1)] - 2 / g R (wydut  (3:24)
// Ro(u — ) + Ry (1 — v)|dudy

(3.25)

g(t) — g(t) +ev(t) (3.26)

@H —0 (3.27)

(3.28)

Then solve g(t) from [ v(7)[—R.(7)+ [ g(u)[Ry(u—
7) + Ry(u — 7)du]dr = 0.

3.4.3 Noncausal Filter Optimization

From the equation to be solved in "Parametric Filter
Optimization", if we do not have any restriction on
causality of our filter, then ¢(¢) and v(t) can be nonzero
for t < 0 which will give us the ff:

Ry (1) = g(7) * [Ro(T) + Ry (7)] (3.29)
Sz(w) = G(w)[Sz(w) + Sy(w)] (3.30)
Glw) = —2=@) (3.31)

Sz(w) 4+ Sy (w)

3.4.4 Causal Filter Optimization

From the equation to be solved in "Parametric Filter
Optimization", if we require a causal filter for signal es-
timation, then g(¢) = 0 and v(¢t) = 0 for ¢ < 0. Using
Wiener-Hopf equation we can solve this as follows:

(r) = {some number, ¢ > 0 (3.32)

— Rulr) = [ gu){Ralu— 1) + ol — 7))du
(3.33)
Aw) = Sz(w) = G(w)[Sz(w) + Su(w)] (3.34)
Szo(w) = Syp(w) + Sy (w) (3.35)
S (w) = poles & zeros at LHP of Sy, (w) (3.36)
S, (w) = poles & zeros at RHP of S, (w) (3.37)
Gw) = [causal part of Sf () ] (3.38)

- S:ci_v ((U) mv(w>

4 Propagation of states and co-
variances

4.1 Discrete Time Systems

= Fp_12p1 + Gro1up—1 + w1 (4.1)

T = E(vg) = Fr—125-1 + Gr_1up—1 (4.2)

Py = El(z, — %) (...)T] = Fpo1 Peo1 Fiy + Q1
(4.3)



Note: zy, is a linear combination of xg, {w;}, {u;}.
If we assume {u;} is known, o and {w;} as Gaussian,
we can fully characterize xj as xy ~ N (@, Py).

Theorem 21 Discrete-time Lyapunov Eq. Consider
the equation P = FPFT 4+ @) where F and () are real
matrices. Denote by A;(F') the eigenvalues of the F' ma-
trix.

1. A unique solution P exists if and only if
Ai(F)A;(F) # 1 for all ¢,j. This unique solution
is symmetric.

2. If F is stable then the discrete-time Lyapunov
equation has a solution P that is unique and sym-
metric. P =Y 0  F'Q(FT)’

3. If F' is stable and @ is positive (semi)definite, then
the unique solution P is symmetric and positive
(semi)definite.

4. If F is stable, @ is positive semidefinite, and
(F,Q'?) is controllable, then P is unique,
symmetric, and positive definite. = Note that

Q2 QVAT = Q.
Many times, process noise is first multiplied by some
matrix before it enters the system dynamics. We can

represent this as:

= Fp_10k—1 + Gr_1up—1 + Li—1wr—1

4.4

Wr—1 ~ (Oa Qk) ( )

T = Frp_1TK-1 ;— Gr_1uk—1 + wi—1 (4.5)
Wg—1 ~ (OaLkaLk)

yr = Hypxy, + Loy, vk (0, Ry) (4.6)

yk = Hyap + vi, v (0, LR L)) (4.7)

4.2 Sampled Data Systems

Definition: system whose dynamnics are described by
a continuous time differential equation, but the input
only changes at discrete time instants because the input
is generated by a digital computer.

& =Axr+ Bu+w (4.8)

Tp = Fr_1Tk-1 + Gr—1Uk—1

123 4.9
+/ A=)y (1) dr (4.9)
tr—1
Fk _ eAAt
tret1 4.10
e 2/ eA(t’““*T)B(T)dT ( )
ty
Ty = E(l’k) = Fp_1Tp—1 + Gr_1up_1 (411)
P.=F_ 1P, 1 FL |+ Qi (4.12)
tr
Ons = / At (1)eA B dr (4.13)
te—1
Ak=T) o~ T for 7 € [ty_1,t
e or T € [tk—1,tk (4.14)

Q-1 ~ Qc(tr) At

4.3 Continuous Time Systems

22
A —|—/ AT B(ryu(t)dr  (4.15)

th—1
& =Ax+ Bu+w (4.16)
T = AZ + Bu (4.17)
Py=Fy 1Py 1 FL |+ Qi (4.18)

The mean and covariance for the continuous time
system was obtained equating the left hand side to
% and using F =~ [ + AAt.

Theorem 22 Continuous-time Lyapunov/Sylvester
Eq. Consider the equation P = AP + PAT + Q, where
A and @, are real matrices. Denote by A;(A) the eigen-

values of the A matrix.

1. A unique solution P exists if and only if
Ai(A)Aj(A) # 1 for all 4,j. This unique solution
is symmetric.

2. If A is stable then the continuous-time Lyapunov
equation has a solution P that is unique and sym-
metric. P =372 eA TQeATdr

3. If A is stable and @ is positive (semi)definite, then
the unique solution P is symmetric and positive
(semi)definite.

4. If A is stable, ) is positive semidefinite, and
[A, ( i/Z)T] is controllable, then P is unique,
symmetric, and positive definite. = Note that

QY (QY)T = Q..

5 The Discrete-time Kalman Fil-
ter

5.1 Derivation

e Kalman filter operates by propagating the mean
and covariance of the state through time.

e Our goal is to estimate the state x; based on our
knowledge of the system dynamics and the avail-
ability of the noisy measurements y.

e P, = covariance of the estimation error.

e Estimates:

& = Elxglyr...yx] = a posteriori  (5.1)
i = Elxglyr ... yx—1] = a priori (5.2)
Tpipan = Elze|yr .. yren] = smoothed (5.3)
Zpip—m = Elwglyr ... ypr—m] = predicted (5.4)

1. Dynamic system definition

Ty = Fp10k—1 + Gro1uk—1 + wip—1
yr = Hypxp + vg

B(wyw]) = Q10y—

E(’Uk’UjT) = Rkék_j

E(wkva) =0



2. Initialization: Py" = 0 if perfect knowledge, Py =
ool if no knowledge.

&g = E(xo)

5.6
B = Blwo — D)o )7 0

3. KF is computed for each time step k =1,2,...
(a) Time Update:

b = kalpl:r—lFI;fA + Qr—1 (5.7)

&y = Fy1@) | 4 Gro1ug—1
(b) Kalman Gain:

Ky =P, HE(Hy Py HE + Rp)™ " (5.9)
=P H!R! (5.10)

(¢) Measurement Update:

By = ay + Ki(ys — Hyiy) (5.11)
Pl = (I — KyHy,)P, (I — KpHy,)" + KL Rp Kj.

(5.12)

= [(Py) "'+ Hy Ry ' Hy ™! (5.13)

= (I — KyHy) P, (5.14)

e Fq. 5.12 is also called "Joseph stabilized version".
More stable and robust. It is symmetric positive
definite given P, is sysmmetric positive definite.

e Eq. 5.13 is rarely implemented.

e Eq. 5.14 is computationally simpler.

e K} can be pre-calculated offline except for nonlin-
ear systems.

5.2 KF Properties

Given Ty = xx — Ik, T is also a RV. Suppose we
want min E[Z] Sy, zx] where Sy, is a positive definite user-
defined weighting matrix.

e If w, and v, are Gaussian, zero-mean, uncorre-
lated, and white, then the KF is the solution to
the above problem.

e If w, and vy are zero-mean, uncorrelated, and
white, then KF is the optimal linear filter (best
filter that is a linear combination of the measure-
ments).

e If wy and vy are correlated or colored, or for non-
linear systems, KF can be modified to solve the
problem.

The quantity (yx — Hy&, is called the innovations.
It contains new information about the state. It is zero-
mean and white with covariance (H,P, H + Ry). In
fact, KF can be interpreted as a filter that whitens the
measurement and extracts the maximum possible info
from the measurement. If mean and covariance of inno-
vation is not as expected, then either the system model
is incorrect or the assumed noise statistics are incorrect.

5.3 One-Step KF Equations

T = Fu(I — KpHy)2y, + Fp Ky + Grug - (5.15)
Proy = FuP Y + Qi
F P HI(HyP, H + Ry) 'H P, Fl (5.16)
= discrete Riccati eq.

qA:Z_ = (I — Kka)(Fk_lf;_l + Gk—luk—l) + Kryx
(5.17)

Pl =1 - KpHy)(Fr1 Pl FL +Qr-1)  (5.18)

5.4 Alternate Propagation of Covari-
ance

5.4.1 Multiple State Systems

If P, can be factored as P, = AkBk_l, then P,

A1 By _&1. A and B can propagate as follows:

[Ak+1] _ {(Fk +QrF,THI R, Hy) Qka_T} {Ak}

Bt F,"HI R Hy, E;T | |Be
(5.19)
oAk gk | P
) [BJ = {I} (5.20)
Aoo _ glarge p Pl_
] ~ o ] 2

5.4.2 Scalar Systems

Al gren [Ad] L A0 -1 [P

{Bk]@ By =M, Ab-1 M 1
(5.22)

mipy ' (QRH?P] —72) — o5 ' (2H?P{

P’f_ - 2,,k—1 2 p— 2, k—1 2 p—
2H?pi{" (2RH?P[ 1 —19) — 2H?pus " (2H?P; —11)
(5.23)
H?Q+ R(F*+1)+o
A2 = SFR (5.24)
o =+/H?Q+ R(F +1)2\/H2Q + R(F — 1)2
(5.25)
m2=HQ+R(F*-1)+o (5.26)
pi2=H*Q+ R(F*+1)+0 (5.27)
T1 T2
_ |2a®  2m?
M= { 1 1 ] (5.28)
_ 1 2RH2 —T1
Mt=— - 2
7 (R—1)+ 20 {—QRHZ Rﬁ] (5.29)
. - T1
klgr()lo P = oY°e] (5.30)

5.5 Divergence Issues

e (Co)variance increases during time update and de-
creases during measurement update.

e Primary cause of KF failure are finite precision
arithmetic and modeling errors.



e KF assumes model is precisely known; noise se-
quences wy, and vy are pure white, zero-mean, and
completely uncorrelated.

e To improve filter performance:

1. Increase arithmetic precision.

2. Use some form of square root filtering. This
effectively increases arithmetic precision at
the cost of adding complication.

3. Symmetrize P at each time step: P = (P +
PT)/2, change lower triangle, or force eigen-
values to be positive.

4. Initialize P appropriately to avoid large
changes in P.

5. Use fading memory filter. Force to forget
measurement from distant past and more em-
phasis on recent measurements. Exchange
optimality with stability and convergence.

6. Use fictitious process noise (especially for es-
timating "constants"), effectively telling the
filter not to trust the model as much.

e If a system model has too much noise, it becomes
difficult to estimate. If a system model has too
little noise, it is susceptible to modeling errors.

6 Alternate KF formulations

6.1 Sequential KF

KF implementation w/out matrix inversion. Require-
ment: 1) Ry is diagonal (eq. 6.2) OR 2) Ry is con-
stant (eq. 6.3). Normal KF is sometimes called Sequen-
tial/Recursive/Batch KF.

1. System definition

Tp = Fp121 + Gr_1up—1 + wi_1

(6.1)
Yk = Hyxp + v
Rk = diag(lev ceey R'I“k) (62)
R=SRS™*
Yo =Sy = ST (Hpwp + vi) (6.3)
= Hyxy, + Uy
2. Initialization:
QA'}JF =F i)
R X)
Py = E[(zo — &g ) (w0 — 25)" |
3. At each time step k, time update:
P]; = Fk71PJ_1FE,1 + Qr—1 (6 5)
&y = Fea@) | 4+ Gro1ug—1
4. At each time step k, measurement update:
(a) Initialize:
T, =2y 6.6)
OJ; =P, 6.7)
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(b) Fori=1,...,7:

Pitl,kHiT,k
Hika_Lng,; + Rix,
PiJ,r/cHiT,k
Ry,
g = g+ Kaw(yar — Hind)y )
Pt = (I — KipHy) Py (I — Ky Hi)"

K, =

+ KR K
= [(Pitl,k)_l + HY Hip/Rig] ™
= (I - KikHik)Pitl)k
(6.8)
(¢) End:
At At
Ly = Ty,
. . (6.9)
bl =P,

6.2 Information Filtering

KF that propagates information matrix Z = P~!. Com-
putationally efficient if r >> n (much more measure-
ments than states). More mathematically precise for
the zero initial certain case, while KF is more precise
for the zero initial uncertainty case.

1. Dynamic system definition

T = Frp_1Tk—1 + Gr—1Uk—1 + Wr—1 (6.10)
yr = Hypxp + vy '

2. Initialization: PO+ = 0 if perfect knowledge, Py” =
ool if no knowledge.

Tg = E(xo) (6.11)

Iy = El(xo — & )(xo — 25)"]7"

3. Foreach k =1,2,...
I, = Qs (6.12)
Qb P (T, + B Q) Fioa) T R Q2

(6.13)
I =1, + H R, ' Hy (6.14)
Ky = () 'HR;! (6.15)
&y = Feo@f_ | + Gro1up—1 (6.16)
& =32, + Kilyr, — Hi?},) (6.17)

6.3 Square Root Filtering

To solve numerical precision problem that arises from
cases in which some elements of the state-vector x are
estimated to much greater precision than other elements
of x.



6.3.1 Condition Number

o?(P) = \(PTP) = \(PPT) (6.18)
- Tmaz(P)

Our goal is to find S such that P = SST. If P is
symmetric positive definite then it always has a square
root (can be more than one).

The Cholesky Matrix Square Root Algorithm {

{
Sy = /P - TSt
Forj=1,--,n
{
S;i=0 j<i
SJ‘,- = SL“ (Pj' - EL-:Il Sij,‘k) Jg>1
}
}
}
a*(P) = [0*(8)] (6.20)
Omaz(P)  02,,.(9)
— max 21
Trmin(P) Torin(S) (6.21)
k(P) = x*(9) (6.22)
6.3.2 Square Root Time Update Eq.
ST S+ NTFT
k—1

where T' is a 2n x 2n orthogonal matrix computed using
numerical linear algebra methods.

6.3.3 Potter’s Square Root Measurement Up-
date Eq.

Potter's square root measurement-update algorithm

1. After the a priori covariance square root S and the a priori state estimate
#; have been computed, initialize

i =
Sho= S (6.73)

2. Fori=1,---,r
lowing.

(where r is the number of measurements), perform the fol-

(a) Define Hy; as the ith row of Hg, yu as the ith element of yi, and Ry
as the variance of the ith measurement (assuming that Rj is diagonal).

(b} Perform the following to find the square root of the covariance after the
ith measurement has been processed:

by = S;f;rkH?;;
. . S
oT g+ R
1

W= Tivaks

§h = S5iuT —amdig]) (6.74)
() Compute the Kalman gain for the ith measurement as

K = a, S5 (6.75)

(d) Compute the state estimate update due to the ith measurement as

ih =80+ Koe(vie — Hady p) (6.76)

3. Set the e posteriori covariance square root and the a posteriori state estimate
as
Sf o= Sh

#H o= &k (6.77)
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6.3.4 Square Root Time Update Eq

(Ry + Hy P H)T/? @ET} =T [ Ry 0
0 (Sy) (SHTHE (ST
(6.24)
Ky = Ky (Ry, + Hy Py H)T/?
(6.25)

where T is a (n + r) x (n + ) matrix computed using
numberical linear algebra methods.

6.3.5 Algos for Orthogonal Transformations

6.351 The Househalder algerithm The algorithm presented here was developed
by Alston Householder [HouGd, Chapter 5], applied to least sguares estimation
by Gene Golub [Gol8S), and summarized for Kalman filtering by Peaul Kamin-
ki [KumT1].

1. Suppose that we have a 2n = n matrix A, and we want to find an noxn
metrix W such that
TAW = [ v ]

where T is an orthogonal 2n x 2n matrix, and 0 is the n x n matrix conslsting
of all zeros. Mote that this problem statement Is In the same form as Eque-
tion (6.58). Also note that we do not necessarily need to find T', our goal is
to Bnd W,

2. For k=1,--,n perform the following:

(6.68)

(a) Compute the scalar oy 28

= (4) | 35 (40)°

ik

(6.99)

where ALY is the slement (n the ith row and kth column of 4™, The
segn-) function i defined to be egual to +1 If its argument is greater
than or equal to zero, and —1 if its argument is less than zepo.

(b) Compute the scalar S, ns
1

A=———— (6,100}
T [a';; * A[:;}
{c) Fori=1,:.-,2n perform the following:
0 i<k
ul = m+aly i=k {6.101)
AW ink
This gives & 2n-clement column vector u'®),
{d) Fori=1,-- n perform the following:
[} i<k
k) 1 i=k
W= ks (6.102)
ﬁ*u(k:l?'}!‘l"] ik

where A™ ig the ith column of A, This gives an n-element cslumn
vector yie!,

{#) Compute the 2n x n matrix AR ag

AR o IR (8 T (6.108)
3. After the above steps have besn esecuted, AN+ has the form
fnt1d _ w
Alnt1) [ ; ] {6.104)

where W ls the n » n matrix that we are trying to solve for. Note that if
&y = 0 at any stage of the algorithe, that means AV is rank deficient and
the algorithm wil] fall. Also note that the above algorithm does not computs
the T matrix. However, we can find the T matrix as

intpla=1) i)
I- EEII‘{&] H[HT

T =

T i=1,-m {6.105)



6.3.5.2 The modified Gram-Schmidt algorithm The modified Gram-Schmidt al-
gorithm for orthonormalization that is presented here is discussed in most linear
systems books [Kai80, Bay99, Che99]. It was first given in [Bjo67] and was sum-
marized for Kelman filtering in [Kam?71].

1. Suppose that we have a 2n x n matrix A, and we want to find an n x n
matrix W such that

TAW = [ ‘g } (6.106)

where T is an orthogonal 2n x 2n matrix, and 0 is the n x n matrix con-
sisting of all zeros. Note that this problem statement is in the same form as
Equation (6.58).

2. For k=1,.--,n perform the following.
(a) Compute the scalar o as
ap = AFT4® (6.107)

where A™) is the ith column of A,
(b) Compute the kth row of W as

0 j=1l- k-1
Wij=1{ 0Ok i=k (6.108)
ANTAB (g j=k+1,0n
{c) Compute the kth row of T as
T = AN oy (6.109)

(d) If (k < n), compute the last (n — k) columns of A%+ as
AR =AW W, AP e, =41, (6.110)

Note that the first k columns of A%*1) are not computed in this algo-
rithm.

As with the Householder algorithm, if o) = 0 at any stage of the algorithm, that
means A1) is rank deficient and the algorithm fails. After this algorithm completes,
we have the first n rows of T, and T is an n x 2n matrix. If we want to know the
last n rows of T', we can compute them using a regular Gram~Schmidt algorithm
as follows [Hor85, Gol89, Moo00].

—

Fill out the T matrix that was begun above by appending a 2n x 2n identity
matrix to the bottom of it. This ensures that the rows of T' span the entire
2n-dimensional vector space:

T= {r‘” (6.111)

Note that this T is a 3n X 2n matrix.

[S]

. Now we perform a standard Gram-Schmidt orthonormalization procedure on
the last 2n rows of T' (with respect to the already obtained first n rows of T).
For k=n+1,---,3n, compute the kth row of T as

k-1
T = Ti- Y (GINT
=1
T
T = — 6.112
" = T (®12)

If T}, is zero then that means that it is a linear combination of the previous
rows of T'. In that case, the division in the above equation will be a divide
by zero, so instead T} should be discarded. This discard will actually occur
exactly n times so that this procedure will compute n additional rows of T'
and we will end up with an orthogonal 2n x 2n matrix T.

1w ugs

U=10 1 U23 (626)
0 0 1
D = diag(dn, dgg, d33) (627)

P11 = diy + daouiy + dazuis
P12 = daouiz + d33u13us3
P13 = d33ui3

) (6.28)
D22 = daa + d33usg
P23 = d33Ua3

P33 = d33

R 1
UDU" = [D; .y — —(Di U H )(Di U H )T

K2

Uiy =U;. U
D;=D
(6.29)
wy, DvT
u(k,j) = —=2% for jk=1,...,n
v Dvf (6.30)
W=U"V

The U-D measurement update

1. We start with the a priori estimation covariance P~ at time k. Define Py =

P,

2. For i = 1,--+,r (where r is the number of measurements), perform the fol-

lowing:

(a) Define H, as the ith row of H, R, as the ith diagonal entry of R, and

Q= H1Pi—1H‘T +R,.

(b) Perform a U-D factorization of P;_; to obtain U;_; and D;_,, and then

form the matrix on the right side of Equation (6.120).

(c) Find the U-D factorization of the matrix on the right side of Equa-

tion (6.120) and call the factors U/ and D.
(d) Compute U, and D; from Equation (6.122).

3. The o posteriori estimation covariance is given as P+ = U, D, UT,
The U-D time update

1. Begin with P* = U+D+U*T (from the measurement update equation).

2. Define the following matrices.

W = [FU+ I]
" Dt 0
b = [0 Q] (6.135)

6.4 U-D Filtering

KF that has twice as much precision but requires less
computation than square root filter. Base on factoriza-
tion P = UDU” where U is an upper triangle matrix
and D is a diagonal matrix. It also has the same re-
quirements as sequential KF.

3. Use the rows of W along with the Gram~Schmidt orthogonalization procedure
to generate v; vectors that are orthogonal with respect to the D inner product.
The algorithm for generating the v; vectors is given in Equation (6.128).

4. Form the V matrix using the v; vectors as rows; see Equation (6.132).

5. Use D inner products to form the unit upper triangular matrix U~; see Equa-
tions (6.129) and (6.132).

6. Define D~ as D~ = VDVT.

7 KF Generalizations

7.1 Correlated Process and Measure-

ment Noise

General Discrete KF



1. System and measurement equations
g = Fr_126-1 + Gro1uk—1 + wi—1
yr = Hrxp + v
wy ~ (0, Q)
vp =~ (0, Rg)
Elwyw]] = Qrdx—;
E[vkvf] = Rydk—;
E[wk,v;‘-r} = Mybp—j+1
(7.1)
2. Initialization
&3 = E(wo)
B = El(wo —i)(..)"]
3. Fork=1,2,...
Py =Fe 1P F + Qe
Ky = (P H + My)(Hy P, HiY + Hi, My+
MIHE + Ry) ™!

(7.2)

= P (HF + (Py) " "My) (R, — ME(P; )~ M) ™!

&y = Fr_18f |+ Gr_1up—1
& =&y + Ki(ye — Hi2y,)
Pl = (I - KyHy,) P, (I — KipHy)"+

Ky (HpMy, + M H] + Rp)K[ — My K[ — K M}

=[(P) ™ + (H + (Pg) ™" My x
(R — ML (P) ™" My) ™ (Hy, + ML (P~ D))
=P, — Ky(H.P, + M)

(7.3)

7.2 Colored Process and Measurement
Noise

7.2.1 Colored Process Noise

Wy = YW1 + (p—1 (7.4)
Tk o F I Tl—1 O
ol R A R P
), = Fy 1%y + Wy (7.6)
1Ty 0 0 AV,
7.3 Colored measurement noise: State
augmentation
Vi = YPr—1Vp—1 + Cp—1 (7.8)
| | F 0| |Tk—1 Wg—1
S e e R o
yk = [Hr 1] [i:] +0 (7.10)
Bluwjufl) = % Q(;J (7.11)
Elvvi]=0 (7.12)
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However, a singular measurement-noise covariance often
results in numerical problems.

7.3.1 Colored measurement noise: Measure-
ment differencing
1. Definition
Ok = Yr—1Uk—1 + Ck—1 (7.13)
Yeo1 = Yk — Vk_1Yk—1 (7.14)

= (HpFr—1 — Yx—1Hi—1)zp—1 + (Hywg—1 + Ce—1)

(7.15)

=Hj_Tp—1+ vy (7.16)

2. At each time step
#f =&y + Kily, — Hidy)
Ty = Friy + Crly, — Hiydy)
Ky = Py H{Y (H, P Hi' + Ri)™!
My = QrH},
Cy = My(H, P, H{¥ + Ry,)™?
Bf = (I - Ky Hy) Py (I — KiHp)" + Kp R K,
Py = P F + Qr — O M —

F.K M, — MFKTFE
(7.17)

7.4 Steady-State Filtering

Ways of calculating Kalman gain:

1. numerical simulation
2. discrete algebraic Riccati equation (DARE): as-

sume P~ = P, in P update eq. then Py to
compute for K,
(a) may not converge to steady state value

(b)
(c)

may converge to different steady state value
depending on P,

may converge to steady state value but result
in unstable KF

(7.18)
(7.19)

A et
T, =F1]_4
i = - KooH)F2} | + Kooy

DARE Theorems Def: matrix pair (F,G) is control-
lable on the unit circle if there exists some matrix K such
that (F — GK) does not have eigenvalues with magni-
tude 1.

Results Conditions (iff.)
Thm P # of sol'm — (F,H) (F-MR™'H,G)
_ ss KF
23 unique 1 stable detectable  stabilizable
pos. def.
24 > 1 pos. 1 stable detectable  controllable  on
semidef. unit circle
25 > 1 pos. 1 stable detectable  controllable  on
def. and inside unit
circle
26 > 1 pos. geql detectable N/A
semidef. marginally

stable




7.4.1 «— ( filtering

Newton dynamic system with state position and veloc-
ity.

1 7 N T2/2]
0 1%k T | Wkt

T =
2
yk:[l 0] z + vg (7.20)
w;ﬂ = (0’03;)
T
K= [Kl KQ] = [a B/T] (7.21)
1
Ky = —gw + 8 — (A +4)V A2+ 8))
1
Ky = E()\Q +4XN — AV A2 £ 8))
_ K10'12u
Py = 1-K
! (7.22)
P — KQO‘TQU '
12 — 1— Kl
_ Ky Ky __
Py = (? + 7)1312
o2 T?
)\: w
R
Pl =KR
Py = KR (7.23)
K, Ky __
P2+2 = (? - 7)P12

7.4.2 «— p—~ filtering

Newton dynamic system with state position, velocity,
and acceleration.

1 T T2/2 T2/2
= |0 1 T Tp41 + T w;cq
0 0 1 1

(7.24)

K=[K K, K3]=[a B/T ¢/2T%]" (7.25)
a=1-52
B=2(1-s) (7.26)
¢ =2As
b=A\/2-3
c=A/2+3
p=c—1b?/3
203 be
q_277—§—1 (7.27)

1/3
—q+ /¢ +4p3/27] /
2

s=z-p/(32) —b/3

Pl"i =aR

P}, = BR/T

Pl = ¢R/2T?

8af + ¢(8 — 2a — 4)

P, = 8T2(1 — a) R (7.28)
pr _ B2B-9)R

B 4T3(1 - a)
pr - $2B-9)R

37 4T4(1 - a)

7.4.3 Hamiltonian Approach

1. Form the 2nz2n Hamiltonian matrix for an n state
KF.

FT FTHTR'H

H= QF T F+QF THTR'H

(7.29)

2. Compute the eigenvalues of H. If any of them are
on the unit circle, then we cannot go any further
with this procedure; the Riccati eq. does not have
a steady-state sol’n.

3. Collect the n eigenvectors that corresponds to the
n eigenvalues that are outside the unit circle. Col-
umn i is the i*" eigenvector.

Do
Doo
4. Compute the steady-state Riccati eq. sol'n. ®q4

must be invertible.

Pl = 0y ®7)

(7.30)

(7.31)

H is a symplectic matrix. It satisfies the ff:

CJYHT T = H where J = {_OI é]

. None of the eigenvalues are 0.
. If X\ is an eigenvalue, then so is 1/\.
. The determinant is +1.

N R

7.5 KF with Fading Memory

Fading-memory filter
1. System equation
g = Fr_12p1 + Gr_1up—1 + wp—1
Y = Hrxp + v
E(wpw] ) = Qibr—j
E(vkva) = Rydk—;

E(wkvjr) =0

(7.32)
2. Initialization
&g = E(zo)
B = E[(xo — 23)(---)"]
3. Choose a > 1 based on how much you want the
filter to forget past measurements. a = 1 is like

standard KF. a = oo is like taking most recent
measurement only.

(7.33)

14



4. For each time step £k =1,2,...

Py =a’Fy 1 Py FE + Qi
Ky = Py HY (Hy Py HE + Ry) ™!
D T p—1
- P]:_Hk Rk
&y = Feoa@f | + Gro1up—1
&y = dy, + Ki(ye — Hity,)
B = (I - KpHy) Py (I - KpHy,)™ + KRy K]
N -1
= [(P0) " + HI R B,

= Py KyHy Py,
(7.34)

7.6 Constrained KF

7.6.1 Model reduction

1. (-) makes interpretation less natural and more dif-
ficult (loses physical meaning)

2. (-) cannot extend inequality constraints

3. (+) straightforward and (usually) easily imple-
mented

7.6.2 Perfect measurements

Add constraints to rows of measurement.

1. (-) singular covariance increase the possibility of
numerical problems

2. (-) inequality constraints are implemented as soft
constraints. difficult to control how close the state
estimate gets to the constraint boundary.

7.6.3 Projection approaches
* to be added *

7.6.4 Pdf truncation approach
* to be added *

8 Nonlinear KF

All systems are ultimate nonlinear.

Zo, Uo, Yo, Wo and vy are the nominal state, control,
output, system noise and measurement noise.

CT system equation:

&= f(z,u,w,t)
Yy= h(a:,v,y)
wEO’Q) (8.1)
v(0, R)
Ty = f(x0,u0,0,1)
Yo = h(z0,0,1)

DT system equation:

T = fro—1(@p—1, Uk—1, Wr—1)

Yk = h(wk, vi) 52)
wkzov Qk) .
i, (0, Ry,)
8.1 Linearized KF
1. CT system equation (eq. 8.1)
2. Compute
A=
oz |,
p=2
w
0 (8.3)
oh
C =
oz |,
a =2
dv |,
) =LQL"
@=10 . (8.4)
R=MRM
3. Ay=y—yo
4.
A#(0) =0
P(0) = E[(A2(0) — A#(0))(...)"]
Az = AAZ + K(Ay — CA%) (8.5)
K =PCTR™!
P=AP+ PAT + Q - PCTR'CP

5. T =ux9+ A

Derivation Notes:

1. Taylor series linearization gives us a nominal tra-
jectory which is &~ actual.

2. | means evaluated at nominal control, state, out-

0
put, and noise values.

3. Taylor approximation gives us:

i =~ f(zg,u0,wo,t) + AAz + BAu+ LAw (8.6)
y = h(xg,vo,t) + CAz + MAwv (8.7)

4. Assume wyg = vg = 0 and u(t) = wug (perfectly

known).
5. P = covariance of est. error + linearization error

8.2 Extended KF (EKF)

8.2.1 Continuous-time

1. CT system equation (eq. 8.1)



2. Compute
of
A= 5o )
of
" b ¢ (8.8)
oh ’
oh
M== )
Q=LQL"
R=MRMT (89)
3.
#(0) = E[2(0)]
P(0) = E[(x(0) — (0))(...)"]
= f(&,u,wy,t) + K[y — h(Z,v0,t)] (8.10)

Derivation: EKF came from equation &g + Ai =
f(zo, ug, wo,t) + AAZ+ K[y — yo — C(& — x0)], and then
choosing zo(t) = &(t).

8.2.2 Hybrid

Continuous time dynamics + discrete time measure-
ments.

1. CT system equation (eq. 8.1)
2. Initialization:

it =E(x

(PR L 1)
Py = E[(xo — &5 )(z0 — &7)" |

3. Fork=1,2,...

(a) Integrate with the ff. eq to get Z,” and P,

&= f(&u,0,t)
P=AP+ PAT + LQL"

(8.12)
(8.13)
(b) Substitute Ry with MkRkMkT and then use

eq. 5.9-5.10 and 5.12-5.14 to update K} and
P,
i‘;: =T, + Ky (yr — hk(i‘;,o,tk) (8.14)
Note that between (discrete) measurements times,
R = 0o because we don’t have new measurements.

8.2.3 Discrete-time

1. DT system equation (eq. 8.2)

2. Initialization:
7 = B(wo) (8.15)
Py = E[(zo — &) (w0 — 27)"]

3. Fork=1,2,...
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(a) Time update

0fr—1
Fo =
k1 5 s
- 8.16
I 0fr—1 (8.16)
-1 5 .

Pr =F Pl P+ L1 Qr—1 LE_4

&y = feo1 (@), uk—1,0)
(8.17)

(b) Measurement update: substitute Rj with
MkRkMkT and then use eq. 5.9-5.10 and 5.12-
5.14 to update K} and P;.

Ohy
=51
(8.18)
ohy
M, = 22k
§ 0 | 4-
k
‘%k ::2,:+Kk(yk 7hk(ﬁ;,0,tk) (8.19)

8.3 Higher Order Approaches
8.3.1 Iterated EKF

Idea: reformulate f and h from previous step since we
have an even better estimate of xj,

Similar to sec. 8.2.3 except at measurement up-
date (3b), you do for ¢ = 0,...,N. You start with
:2;0 = %, and P,:'O = P, ; and end with i’: = :?J:N_H

+ _ pt
and P = P,“NH.

8.3.2 2nd Order EKF

2nd order hybrid EKF

1. CT system equation (eq. 8.1)
2. Initialization:

z E(x
o = E(wo) . . (8.20)
Py = E[(xg — &g )(wo — 25 )" ]
3. Time update
R . 1 6% fi
T = f(x,u,O,t) + 5 ;(ZSZTT[ dx2 :iP]
P=FP+PFT +LQL"
¢i=10...1.. ,O]Tl on ith element (8.21)
of
F=-L
oz |,
of
L=
ow |,




4. Measurement update

& =y + Kilye — h(@y,)] — m

1 m B
e = 5 K Z;gbiTr[Dk7iPk ]
52hi($k7tk)
Dy = — ko oh)
k, ox? -
k
Ky = P, HF (Hy Py HE + Ry + A) ™!

5h(l‘k7 tk)
ox

Hy =

T

o1 _ _

Ar(i,j) = §TT(Dk,iPk Dy Py)

Pl =P, — P HF (H P, H + Ry + Ay) " 1H P,
(8.22)

2nd order discrete EKF

1. DT system equation (eq. 8.2)

2. Initialization:
7 = B(wo) (8.23)
Py = E[(zo — &) (w0 — )7

3. Time update

= f(&,u,0,t) +

Z«z

— +
Lri1 Pl
ik

PkJrl

®i
F=

=FP F" + Qs
0...1...

of
0w | 5+
k

0]71 on ith element

(8.24)

4. Measurement update

& =2y, + Kilye — h(2})] — me

1 _
T = 5 K Z(biTr[D;mPk ]

5 h (Ik,tk)
ox? o
k
Ky = P, H (Hy P, Hf + Ry,)™*
(WL(Z’k,tk)
ox

Dkz—

(8.25)

Hy, =

Ty

. 1 _ _
Ax(i, j) = §T7’(Dk,ipk Dy ;Py)
Pt = (I - KyHy) Py

8.3.3 Other Approaches
Gaussian sum filter

1. DT system equation (eq. 8.2
2. Initialization: (ap; must sum to 1)

pdf (&7 Z aoi N (8.26)

sz’
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3. Fork=1,2,...

(a) Time update. For i =1,..., M:

Ty, = fk—l(i”;g_l,i, Up—1,0)

Fr_1:=

- _ + T
P =Fe1,iP_  Fy_1;+ Qi

Qi = Qk—1,i

(8.27)
pdf (2 Zakz (#4:> Pei) (8:28)
(b) Measurement update. For i =1,..., M:
Shy
Hy, = 2
k (5£Uk 4=
Ky =P, H,”(H;”P Hm“"Rk)
P = Py — KpiHyi Py
;= Ty + Kralye — hi(y, 0)]
(8.29)
Thi = Y& — hi (2, 0)
Ski = HklP sz + Ry,
L exp[— Tlmskz Ti/2] 8.30
b= aypiaggpr O
= Wi
Zj-wl ak—1,jBk;
pdf (& Zam (&5, P (8.31)

e grid based filtering - valud of the pdf of the state
is approximated, stored, propagated, and updated
at discrete points in space.

e compute the theoretical optimal nonlinear filter
and then linearize the nonlinear filter. Theoret-
ical optimal is very difficult to compute.

8.4 Parameter Estimation

Estimate not only the state of the system, but also the
parameters of the system.

9 Others

http://www.doc88.com /p-714869662960.html

A,b (9.1)
Ab (9.2)
Ab (9.3)
Ab (9.4)
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