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This is my personal attempt to the "digest" or "solve
the end chapter problems in" the book "Simon, Dan.
Optimal state estimation: Kalman, H infinity, and non-
linear approaches. John Wiley & Sons, 2006". This
document is by no means a perfect solution manual for
the said book, but was written simple for my personal
enrichment.

1 Linear Systems Theory

1.1 Matrix Algebra and Matrix Calcu-
lus

Significance: most if not all optimal state estimation are
formulated with matrices.

1.1.1 Matrix Algebra

• Transpose: AT
• Hermitian: AH (complex conjugate + transpose)
• HPHT =

∑
j,kHjPjkH

T
k

• Determinant: |A|
• |A| =

∑n
j=1(−1)i+jAij |A(i,j)|

• |A| =
∑n
i=1(−1)i+jAij |A(i,j)|

• |AB| = |A||B|
• |A| = Πn

i=1λi
• Trace: Tr(A) = sum of its eigenvalues
• Tr(xxT ) = ||x||22
• Positive definite (xTAx > 0), Positive semidefinite

(xTAx ≥ 0), Negative definite (xTAx < 0), Neg-
ative semidefinite (xTAx ≤ 0), Indefinite. For all
(non zero) n× 1 vector x.
• Weighted 2 Norm ||x||2Q =

√
xTQx

• Eigenvalues λi: transformation from 1 vector
space to itself
• If A = n× n, A has n eigenvalues.
• Singular values σ: transformation from 1 vector

space to a different vector space
• If A = n×m, A has min(n,m) singular values.
• σ2(A) = λ(ATA) = λ(AAT )

1.1.2 Matrix Inversion Lemma

Purpose: reduce computational effort of matrix inveri-
son if you already know A and A−1, and the change in
A is only in a certain location.

Given

M =

[
A B
C D

]
, we have the ff. formulas:(
A−BD−1C

)−1
= A−1 +A−1B

(
D − CA−1B

)−1
CA−1

(1.1)∣∣∣∣A B
C D

∣∣∣∣ = |A||D − CA−1B| = |D||A−BD−1C|

(1.2)

1.1.3 Matrix Calculus

With respect to scalar t

Ȧ(t) =

 Ȧ11(t) . . . Ȧ1n(t)
...

. . .
...

Ȧm1(t) . . . Ȧmn(t)

 (1.3)

d

dt
(A−1) = −A−1ȦA−1 (1.4)

where A = m× n matrix, and t is scalar.

With respect to vector x (or y)

δf

δx
=
[
δf/δx1 . . . δf/δxn

]
(1.5)

δ(xT y)

δx
= yT (1.6)

δ(xT y)

δy
= xT (1.7)

δ(xTAx)

δx
= xTAT + xTA (1.8)

δ(Ax)

δx
=
δ(xTA)

δx
= A (1.9)

δg

δx
=

 δg1/δx1 . . . δg1/δxn
...

. . .
...

δgm/δx1 . . . δgm/δxn

 (1.10)

δgT

δx
=

δg

δxT
=

(
δg

δx

)T
(1.11)

δgT

δxT
=
δg

δx
(1.12)

where f(x) is a function, A is a n × n matrix, x, y are
n× 1 vectors, and g(x) =

[
g1(x) . . . gm(x)

]T .
With respect to matrix A

δf

δA
=

 δf/Ȧ11 . . . δf/Ȧ1n

...
. . .

...
δf/Ȧm1 . . . δf/Ȧmn

 (1.13)

δTr(ABAT )

δA
= ABT +AB (1.14)
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1.2 Linear Systems
Many process in our world can be described by state-
space systems. If we can derive a mathematical model
for a process, then we can use the tools of mathematics
to control the process and obtain information about the
process.

General Form:

ẋ = Ax+Buy = Cx

where A is called system matrix, B is input matrix, and
C is output matrix.

Solution (always works even if A,B,C is scalar,
matrix, or vector):

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ

y(t) = Cx(t)

(1.15)

where the integral part goes to zero on "zero input
case".

eAt properties (this is also referred to as state
transition matrix)

eAt =

∞∑
j=0

(At)j

j!
(1.16)

= L −1
[
(sI −A)

−1
]

(1.17)

= QeÂtQ−1 (1.18)
d

dt
eAt = AeAt = eAtA (1.19)

eÂt =

e
Â11 . . . 0
...

. . .
...

0 . . . eÂnn

 (1.20)

e−At = Qe−ÂtQ−1 (1.21)

where Q matrix’ columns comprise the eigenvectors
of A, and Â is the Jordan form of A.

1.3 Nonlinear Systems
General Form:

ẋ = f(x, u, w)

y = h(x, v)

Linear Approximation using Taylor Series

Dk
x̄f =

(
n∑
i=1

x̃i
δ

δxi

)k
f(x)

∣∣∣∣
x̄

(1.22)

f(x) = f(x̄) +D1
x̄f +

1

2!
D2
x̄f + . . . (1.23)

≈ f(x̄) +Ax̃ (1.24)

where x̄ is the nominal operating point and x̃ = x− x̄.

Approximated General Form:

˙̃x = Ax̃+Bũ+ Lw̃

ỹ = Cx̃+Dṽ
(1.25)

where w̃ = w and ṽ = v because w̄ = v̄ = 0, A = δf
δx

∣∣∣∣
x̃

,

B = δf
δu

∣∣∣∣
x̃

, L = δf
δw

∣∣∣∣
x̃

, C = δh
δx

∣∣∣∣
x̃

, and A = δh
δv

∣∣∣∣
x̃

.

1.4 Discretization

base equation (source of general form)

x(tk) = eA∆tx(tk−1) + eA∆t

∫ ∆t

0

e−AαdαBu(tk−1)

(1.26)∫ ∆t

0

e−Aαdα = [I − e−A∆t]A−1 (1.27)

where ∆t = tk − tk−1 and α = τ − tk−1.

Discrete General Form:

xk = Fk−1xk−1 +Gk−1uk−1

Fk−1 = eA∆t

Gk−1 = eA∆t[I − e−A∆t]A−1B

(1.28)

1.5 Simulation

x(tn+1) = x(tn) +

∫ tn+1

tn

f [x(t), u(t), t]dt

1.5.1 Rectangular Integration / Euler Integra-
tion (error = O(T ))

x(tn+1) ≈ x(tn) + f [x(t), u(t), t]T (1.29)

1.5.2 Trapezoidal Integration (error = O(T 2))

∆x1 = f [x(tn), u(tn), tn]T

∆x2 = f [x(tn) + ∆x1, u(tn+1), tn+1]T

x(tn+1) ≈ x(tn) +
1

2
(∆x1 + ∆x2)

(1.30)

1.5.3 Runge Kutta Integration (4th order) (er-
ror = O(T 4) or O(Tn))

∆x1 = f [x(tk), u(tk), tk]T

∆x2 = f [x(tk) + ∆x1/2, u(tk+1/2), tk+1/2]T

∆x3 = f [x(tk) + ∆x2/2, u(tk+1/2), tk+1/2]T

∆x4 = f [x(tk) + ∆x3, u(tk+1), tk+1]T

x(tn+1) ≈ x(tk) +
1

6
(∆x1 + 2∆x2 + 2∆x3 + ∆x4)

(1.31)
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LTI Continuous-time, System LTI Discrete-time
General
Equation

ẋ = Ax+Bu
y = Cx
x(t) = exp(At)x(0)

xk = Fxk−1 +Guk−1

yk = Hxk
xk = Akx0

Marginal
/
Lya-
punov
Stability

If the state x(t) is bounded for all t and for all
bounded initial states x(0).

If the state xk is bounded for all k and for all
bounded initial states x0.

If and only if limt→∞ exp(At) ≤ M < ∞ for
some constant matrix M .

If and only if limk→∞Ak ≤ M < ∞ for some
constant matrix M .

If and only if one of the ff. conditions holds.
1. All of the eigenvalues of A have negative real
parts.
2. All of the eigenvalues of A have negative or
zero real parts, and those with real parts equal
to zero have a geometric multiplicity equal to
their algebraic multiplicity. That is, the Jordan
blocks that are associated with the eigenvalues
that have real parts equal to zero are first order.

If and only if one of the ff. conditions holds.
1. All of the eigenvalues of A have magnitude
less than one.
2. All of the eigenvalues of A have magnitude
less than or equal to one, and those with magni-
tude equal to one have a geometric multiplicity
equal to their algebraic multiplicity. That is,
the Jordan blocks that are associated with the
eigenvalues that have magnitude equal to one
are first order.

Asymptotic
Stability

If, for all bounded initial states x(0),
limt→∞ x(t) = 0.

If limk→∞ xk = 0 for all bounded initial states
x0.

If and only if limt→∞ exp(At) = 0 If and only if limk→∞Ak = 0.
If and only if all of the eigenvalues of A have
negative real parts.

If and only if all of the eigenvalues of A have
magnitude less than one.

Controllable
If for any initial state x(0) and any final time
t > 0 there exists a control that transfers the
state to any desired value at time t.

If for any initial state x0 and some final time k
there exists a control that transfers the state to
any desired value at time k.

The n-state system has the controllability ma-
trix P defined by P =

[
B AB . . . An−1B

]
.

The system is controllable if and only if
rank(P ) = n.

The n-state system has the controllability ma-
trix P defined by P =

[
G FG . . . Fn−1G

]
.

The system is controllable if and only if
rank(P ) = n.

If and only if the controllability grammian de-
fined by

∫ t
0
eAτBBT eA

T τdτ is positive definite
for some t ∈ (0,∞).

If and only if the controllability grammian de-
fined by

∑k
i=0A

k−iBBT (AT )k−i is positive def-
inite for some k ∈ (0,∞).

If and only if the differential Lyapunov equa-
tion W (0) = 0 and Ẇ = WAT + AW + BBT

has a positive definite solution W (t) for some
t ∈ (0,∞). This is also called a Sylvester equa-
tion.

If and only if the difference Lyapunov equation
W0 = 0 and Wi+1 = FWiF

T +GGT has a pos-
itive definite solution Wk for some k ∈ (0,∞).
This is also called a Stein equation.

Observable
If for any initial state x(0) and any final time
t > 0 the initial state x(0) can be uniquely de-
termined by knowledge of the input u(τ) and
output y(τ) for all τ ∈ [0, t].

If for any initial state x0 and some final time k
the initial state x0 can be uniquely determined
by knowledge of the input ui and output yi for
all i ∈ [0, k].

The n-state system has the observability matrix
Q defined by Q =

[
C CA . . . CAn−1

]T .
The system is observable if and only if
rank(Q) = n.

The n-state system has the observability matrix
Q defined by Q =

[
H HF . . . HFn−1

]T .
The system is observable if and only if
rank(Q) = n.

If and only if the observability grammian de-
fined by

∫ t
0
eA

T τCTCeAτdτ is positive definite
for some t ∈ (0,∞).

If and only if the observability grammian de-
fined by

∑k
i=0(FT )iHTHF i is positive definite

for some k ∈ (0,∞).
If and only if the differential Lyapunov equa-
tion W (t) = 0 and −Ẇ = WA+ATW + CTC
has a positive definite solution W (τ) for some
τ ∈ (0, t). This is also called a Sylvester equa-
tion.

If and only if the difference Lyapunov equation
Wk = 0 andWi = FTWi+1F+HTH has a pos-
itive definite solution W0 for some k ∈ (0,∞).
This is also called a Stein equation.

Table 1: Stability, Controlability, and Observability

3



1.6 Stability, Controllability, and Ob-
servability

Linear Time Invariant (LTI). Refer to table 1.

Stabilizability and Detectability

The modes of a system are all of the decoupled states
after the system is transformed into Jordan form. Given

ẋ = Ax+Buy = Cx+Du

and
M =

[
v1 . . . vn

]
(note that M is guaranteed to be invertible),

˙̄x = M−1AMx̄+M−1B

= Āx̄+ B̄u

y = CMx̄+Du

= C̄x̄+Du

(1.32)

• If a system is controllable or stable, then it is also
stabilizable. If a system is uncontrollable or un-
stable, then it is stabilizable if its uncontrollable
modes are stable.
• If a system is observable or stable, then it is also

detectable. If a system is unobservable or unsta-
ble, then it is detectable if its unobservable modes
are stable.

2 Probability Theory

2.1 Probability(
n

k

)
=

n!

(n− k)!k!
(2.1)

P (A) =
# of times A occurs
total # of outcomes

apriori (2.2)

P (A|B) =
P (A,B)

P (B)
aposteriori (2.3)

=
P (B|A)P (A)

P (B)
(2.4)

(2.5)

If A and B are independent:

P (A,B) = P (A) ∗ P (B) (2.6)
P (A|B) = P (A) (2.7)
P (B|A) = P (B) (2.8)

2.2 Random Variables (RV)
2.2.1 Probability Distribution Function

FX(x) = P (X ≤ x)

FX(x) ∈ [0, 1]

FX(−∞) = 0

FX(∞) = 1

FX(a) ≤ FX(b) if a ≤ b
P (a < x ≤ b) = FX(b)− FX(a)

(2.9)

2.2.2 Probability Density Function

fX(x) =
dFX(x)

dx

FX(x) =

∫ x

−∞
fX(x)dx

fX(x) ≥ 0∫ ∞
−∞

fX(x)dx = 1

P (a < x ≤ b) =

∫ b

a

fX(x)dx

(2.10)

Q(x) = 1− FX(x)

= P (X > x)
(2.11)

Chapman Kolmogorov:
f [x1|x2, x3, x4]f [x2, x3|x4] = f [x1, x2, x3|x4]

(2.12)

2.2.3 ith Moment and Central Moment

E[g(x)] =

∫ ∞
−∞

g(x)fX(x)dx (2.13)

E[(x− x̄)2] =

∫ ∞
−∞

(x− x̄)
2
fX(x)dx

(2.14)

= E(x2)− x̄2 (2.15)

= σ2
x (2.16)

x ∼ (x̄, σ2) (2.17)

ith moment of x = E(xi) (2.18)

ith central moment of x = E[(x− x̄)i] (2.19)
skew = 3rd central moment (2.20)

skewness = skew/σ3 (2.21)

Uniform RV:

fX(x) =

{
1
b−a , x ∈ [a, b]

0, otherwise
(2.22)

2.2.4 Gaussian or Normal RV

fX(x) =
1

σ
√

2π
exp

[
−(x− x̄)2

2σ2

]
(2.23)

x ∼ N(x̄, σ2) (2.24)

FX0(x) =
1√
2π

∫ x

−∞
exp

[
−(z)2

2

]
dz (2.25)

FX(x) =
1

σ
√

2π

∫ x

−∞
exp

[
−(z − x̄)2

2σ2

]
dz (2.26)

= FX0

(
x− x̄
σ

)
(2.27)

≈ 1−
[

1

(1− a)x+ a
√
x2 + b

]
exp(−x2/2)√

2π

for x ≥ 0, a = 0.339, b = 5.510

(2.28)

If fX(x) is odd, odd ith moment = 0
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2.3 Transformations of RV

Y = g(X)

X = g−1(X) = h(Y )

P (X ∈ [x, x+ dx]) = P (Y ∈ [y, y + dy])

(2.29)

fY (y) = |h′(y)|fX [h(y)] (2.30)

=
∑
i

fX(xi)/|g′(xi)|

where g()̇ is non-monotonic
(2.31)

2.4 Multiple RV

FXY (x, y) = P (X ≤ x, Y ≤ y)

F (x,−∞) = F (−∞, y) = 0

F (∞,∞) = 1

F (x,∞) = F (x)

F (∞, y) = F (y)

(2.32)

fXY (x, y) =
d2FXY (x, y)

dxdy

F (x, y) =

∫ x

−∞

∫ y

−∞
f(z1, z2)dz1dz2

P (a < x ≤ b, c < y ≤ d)

=

∫ d

c

∫ b

a

f(x, y)dxdy

(2.33)

Marginal Density Function:

f(x) =

∫ ∞
−∞

f(x, y)dy

f(y) =

∫ ∞
−∞

f(x, y)dx

(2.34)

E[g(x, y)] =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y)dxdy (2.35)

CXY = E[(x− x̄)(y − ȳ)] Covariance (2.36)
= E(XY )− X̄Ȳ (2.37)

ρ =
CXY
σXσY

Correlation coefficient (2.38)

RXY = E(XY ) Correlation (2.39)

2.4.1 Statistical Independence

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) for all x, y
FXY (x, y) = FX(x)FY (y)

fxy(x, y) = fX(x)fY (y)

(2.40)

RXY = E(X)E(Y ) (2.41)
E(X + Y ) = E(X) + E(Y ) (2.42)

• Central Limit Theorem - sum of independent RVs
tend toward a gaussian RV.
• Correlation coefficient ρ = 0 if X and Y are inde-

pendent.
• RXY = 0 means 2 RVs are orthogonal.

2.4.2 Multivariate Statistics

RXY = E(XY T ) (2.43)

=

E(X1Y1) . . . E(X1Ym)
...

. . .
...

E(XnY1) . . . E(XnYm)

 (2.44)

CXY = E[(X − X̄)(Y − Ȳ )] (2.45)

= E(XY T )− X̄Ȳ T (2.46)

RX = E[XXT ] (2.47)

RX = RTX (2.48)

zTRXz = E[(zTX)2] ≥ 0 for all z (2.49)

CX = E[(X − X̄)(X − X̄)T ] (2.50)

=

σ
2
11 . . . σ2

1n
...

. . .
...

σ2
n1 . . . σ2

nn

 (2.51)

CX = CTX (2.52)

zTCXz ≥ 0 for all z (positive semidefinite) (2.53)

Gaussian:

f(X) =
1

(2π)
n
2 |CX |

1
2

exp

[
−(x− x̄)TC−1

X (x− x̄)

2

]
(2.54)

Given Y = Ax+ b (2.55)

y ∼ N(Ax̄+ b, ACXA
T ) (2.56)

2.5 Stochastic Process
Stochastic process - RV X that changes with time. It
can be a combition of 1) continuous OR discrete sig-
nal and 2) continuous (process) OR discrete (sequence)
time.

2.5.1 Definition

1st Order:

FX(x, t) = P (X(t) ≤ x)

f(x, t) =
dFX(x, t)

dx1 . . . dxn

x̄ =

∫ ∞
−∞

xf(x, t)dx

CX(t) =

∫ ∞
−∞

[x− x̄(t)][x− x̄(t)]T f(x, t)dx

(2.57)

2nd Order:

FX(x1, x2, t1, t2) = P (X(t1) ≤ x1, X(t2) ≤ x2)

f(x1, x2, t1, t2) =
dFX(x1, x2, t1, t2)

dx1dx2

(2.58)

Autocorrelation:

RX(t1, t2) = E[X(t1)X(t2)T ] (2.59)

Autocovariance:

CX(t1, t2) = E{[X(t1)− X̄(t1)][X(t2)− X̄(t2)]T }
(2.60)
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2.5.2 Stationary

E[X(t)] = X̄ (2.61)

E[X(t1)X(t2)T ] = RX(t2 − t1) (2.62)

• Strict Sense Stationary - pdf does not change w/
time.
• Wide Sense Stationary - satisfies the 2 eq. above,

but is not Strict Sense Stationary.

Wide Sense Stationary Eq:

RX(0) = E[X(t)X(t)T ] (2.63)
RX(−τ) = RX(τ) (2.64)
|RX(τ)| ≤ RX(0) for scalar (2.65)

2.5.3 Another Representation

Time Average of x(t):

A[X(t)] = lim
t→∞

1

2T

∫ T

−T
x(t)dt (2.66)

Time Autocorrelation:

R[X(t), τ ] = A[X(t)X(t+ τ)T ] (2.67)

Ergodic Process:

A[X(t)] = E(X) (2.68)
R[X(t), τ ] = RX(τ) (2.69)

Multiple Process:

RXY (t1, t2) = E[X(t1)Y (t2)T ] (2.70)

CXY (t1, t2) = E{[X(t1)− X̄(t2)][Y (t2)− Ȳ (t2)]T }
(2.71)

RXY (t1, t2) = E[X(t1)]E[Y (t2)T ] if uncorrelated
(2.72)

2.6 White Noise and Colored Noise
2.6.1 Definition

• White noise - x(t1) is uncorrelated w/ x(t2) for all
t1 6= t2.
• Colored noise - otherwise

F [f(t)] =

∫ ∞
−∞

f(t)e−jωtdt (2.73)

F−1[F (ω)] =
1

2π

∫ ∞
−∞

F (ω)ejωtdω (2.74)

2.6.2 Wiener Khintchine Relation

Power Density Spectrum / Power Spectral Density:

SX(ω) = F [RX(τ)] (2.75)

RX(τ) = F−1[SX(ω)] (2.76)

Power PX =
1

2π

∫ ∞
−∞

SX(ω)dω (2.77)

SXY (ω) = F [RXY (τ)] (2.78)

2.6.3 White Noise Properties

Kronecker δk =

{
1, if k = 0

0, otherwise
(2.79)

RX(k) = σ2δk (2.80)
SX(ω) = RX(0) (2.81)
RX(τ) = RX(0)δ(τ) (2.82)

2.7 Simulating Correlated Noise
1. Find the eigenvalues u2

1, . . . , u
2
n and eigenvectors

D = [d1 . . . dn] from covariance matrix Q.
2. Compute v where vi = uiri and ri is an indepen-

dent RV with σ2 = 1.
3. Compute w = Dv and return w.

3 Least Squares Estimation

3.1 Estimation of a constant

y = Hx+ v

ŷ = Hx̂

εy = y −Hx̂
(3.1)

Minimize εTy εy by deriving wrt to x̂ and equating to 0.

εTy εy = (y −Hx̂)T (y −Hx̂) (3.2)

= yT y − x̂THT y − yTHx̂+ x̂THTHx̂ (3.3)

0 = −2yTH + 2x̂THTH (3.4)

x̂ = (HTH)−1HT y (3.5)

3.2 Weighted Least Squares Estimation

R =

σ
2
1 . . . 0
...

. . .
...

0 . . . σ2
k

 (3.6)

J = εTyR
−1εy (3.7)

x̂ = (HTR−1H)−1HTR−1y (3.8)

x̂ was derived by minimizing J .

3.3 Recursive Least Squares Estimation

yk = Hkx+ vk

x̂k = x̂k−1 +Kk (yk −Hkx̂k−1)
(3.9)

Kk is called "Estimator gain matrix". yk−Hkx̂k−1 is
called "correction term". yk and x̂k are called "unbiased
estimator".

1. Initialize x̂0 = E[X] and P0 = E[(x−x̂0)(x−x̂0)T .
If no knowledge, P0 = ∞I. If perfect knowledge,
P0 = 0.

2. For k = 1, 2, . . .
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• Obtain yk where vk is zero mean vector w/
covariance Rk. Note E[vivk] = RXδk−i
(white noise).

• Update the ff. equations

Kk = Pk−1H
T
k

(
HkPk−1H

T
k +Rk

)−1
(3.10)

= PkH
T
k R
−1
k (3.11)

x̂k = x̂k−1 +Kk (yk −Hkx̂k−1) (3.12)

Pk = (I −KkHk)Pk−1 (I −KkHk)
T

+KkRkK
T
k

(3.13)

= (I −KkHk)Pk−1 sub Kk opt (3.14)

=
[
P−1
k−1 +HT

k R
−1
k Hk

]−1
matrix inv lemma

(3.15)

3.4 Wiener Filtering

LTI filter to extract a signal from noise, approaching the
problem from the frequency domain perspective.

Ry(α) =

∫ ∫
g(τ)g(γ)Rx(α+ τ − γ)dτdγ (3.16)

Sy(ω) = G(−ω)G(ω)Sx(ω) (3.17)

E(ω) = [1−G(ω)]X(ω)−G(ω)V (ω) (3.18)
Se(ω) = [1−G(ω)][1−G(−ω)]Sx(ω)−G(ω)G(−ω)Sv(ω)

(3.19)

E[e2(t)] =
1

2π

∫
Se(ω)dω (3.20)

3.4.1 Parametric Filter Optimization

Assuming G(ω) is a first order low pass filter with BW
1
T , we have G(ω) = 1

1+Tjω . Suppose Sx(ω) and Sv(ω)
are as follows, we have Topt:

Sx(ω) =
2σ2β

ω2 + β2
(3.21)

Sv(ω) = A (3.22)

Topt =
sqrtA

σ
√

2β − β
√
A

(3.23)

3.4.2 General Filter Optimization

Use calculus of variation to differentiate and minimize
E[e2(t)]:

E[e2(t)] = E[x2(t)]− 2

∫
g(u)Rx(u)du+ (3.24)∫ ∫

g(u)g(γ)[Rx(u− v) +Rv(u− v)]dudγ

(3.25)

g(t)→ g(t) + εν(t) (3.26)

δE(e2(t))

δε
|ε=0 = 0 (3.27)

(3.28)

Then solve g(t) from
∫
ν(τ)[−Rx(τ)+

∫
g(u)[Rx(u−

τ) +Rv(u− τ)du]dτ = 0.

3.4.3 Noncausal Filter Optimization

From the equation to be solved in "Parametric Filter
Optimization", if we do not have any restriction on
causality of our filter, then g(t) and ν(t) can be nonzero
for t < 0 which will give us the ff:

Rx(τ) = g(τ) ∗ [Rx(τ) +Rv(τ)] (3.29)
Sx(ω) = G(ω)[Sx(ω) + Sv(ω)] (3.30)

G(ω) =
Sx(ω)

Sx(ω) + Sv(ω)
(3.31)

3.4.4 Causal Filter Optimization

From the equation to be solved in "Parametric Filter
Optimization", if we require a causal filter for signal es-
timation, then g(t) = 0 and ν(t) = 0 for t < 0. Using
Wiener-Hopf equation we can solve this as follows:

a(τ) =

{
some number, t > 0

0, t ≥ 0
(3.32)

= Rx(τ)−
∫
g(u)[Rx(u− τ) +Rv(u− τ)]du

(3.33)

A(ω) = Sx(ω)−G(ω)[Sx(ω) + Sv(ω)] (3.34)
Sxv(ω) = Sx(ω) + Sv(ω) (3.35)

S+
xv(ω) = poles & zeros at LHP of Sxv(ω) (3.36)

S−xv(ω) = poles & zeros at RHP of Sxv(ω) (3.37)

G(ω) =
1

S+
xv(ω)

[causal part of
Sx(ω)

S−xv(ω)
] (3.38)

4 Propagation of states and co-
variances

4.1 Discrete Time Systems

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1 (4.1)
x̄k = E(xk) = Fk−1 ¯xk−1 +Gk−1uk−1 (4.2)

Pk = E[(xk − x̄k)(. . . )T ] = Fk−1Pk−1F
T
k−1 +Qk−1

(4.3)
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Note: xk is a linear combination of x0, {wi}, {ui}.
If we assume {ui} is known, x0 and {wi} as Gaussian,
we can fully characterize xk as xk ∼ N(x̄k, Pk).

Theorem 21 Discrete-time Lyapunov Eq. Consider
the equation P = FPFT + Q where F and Q are real
matrices. Denote by λi(F ) the eigenvalues of the F ma-
trix.

1. A unique solution P exists if and only if
λi(F )λj(F ) 6= 1 for all i, j. This unique solution
is symmetric.

2. If F is stable then the discrete-time Lyapunov
equation has a solution P that is unique and sym-
metric. P =

∑∞
i=0 F

iQ(FT )i

3. If F is stable and Q is positive (semi)definite, then
the unique solution P is symmetric and positive
(semi)definite.

4. If F is stable, Q is positive semidefinite, and
(F,Q1/2) is controllable, then P is unique,
symmetric, and positive definite. Note that
Q1/2(Q1/2)T = Q.

Many times, process noise is first multiplied by some
matrix before it enters the system dynamics. We can
represent this as:

xk = Fk−1xk−1 +Gk−1uk−1 + Lk−1wk−1

wk−1 ∼ (0, Qk)
(4.4)

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

wk−1 ∼ (0, LkQkL
T
k )

(4.5)

yk = Hkxk + Lkvk, vk (̃0, Rk) (4.6)

yk = Hkxk + vk, vk (̃0, LkRkL
T
k ) (4.7)

4.2 Sampled Data Systems

Definition: system whose dynamnics are described by
a continuous time differential equation, but the input
only changes at discrete time instants because the input
is generated by a digital computer.

ẋ = Ax+Bu+ w (4.8)

xk = Fk−1xk−1 +Gk−1uk−1

+

∫ tk

tk−1

eA(tk−τ)w(τ)dτ
(4.9)

Fk = eA∆t

Gk =

∫ tk+1

tk

eA(tk+1−τ)B(τ)dτ
(4.10)

x̄k = E(xk) = Fk−1x̄k−1 +Gk−1uk−1 (4.11)

Pk = Fk−1Pk−1F
T
k−1 +Qk−1 (4.12)

Qk−1 =

∫ tk

tk−1

eA(tk−τ)Qc(τ)eA
T (tk−τ)dτ (4.13)

eA(tk−τ) ≈ I for τ ∈ [tk−1, tk]

Qk−1 ≈ Qc(tk)∆t
(4.14)

4.3 Continuous Time Systems

x̄k = eA∆tx̄k−1 +

∫ tk

tk−1

eA(tk−τ)B(τ)u(τ)dτ (4.15)

ẋ = Ax+Bu+ w (4.16)
˙̄x = Ax̄+Bu (4.17)

Pk = Fk−1Pk−1F
T
k−1 +Qk−1 (4.18)

The mean and covariance for the continuous time
system was obtained equating the left hand side to
x̄k−x̄k−1

∆t and using F ≈ I +A∆t.
Theorem 22 Continuous-time Lyapunov/Sylvester

Eq. Consider the equation Ṗ = AP + PAT +Qc where
A and Qc are real matrices. Denote by λi(A) the eigen-
values of the A matrix.

1. A unique solution P exists if and only if
λi(A)λj(A) 6= 1 for all i, j. This unique solution
is symmetric.

2. If A is stable then the continuous-time Lyapunov
equation has a solution P that is unique and sym-
metric. P =

∑∞
i=0 e

AT τQce
Aτdτ

3. If A is stable and Q is positive (semi)definite, then
the unique solution P is symmetric and positive
(semi)definite.

4. If A is stable, Q is positive semidefinite, and
[A, (Q

1/2
c )T ] is controllable, then P is unique,

symmetric, and positive definite. Note that
Q

1/2
c (Q

1/2
c )T = Qc.

5 The Discrete-time Kalman Fil-
ter

5.1 Derivation

• Kalman filter operates by propagating the mean
and covariance of the state through time.

• Our goal is to estimate the state xk based on our
knowledge of the system dynamics and the avail-
ability of the noisy measurements yk.

• Pk = covariance of the estimation error.
• Estimates:

x̂+
k = E[xk|y1 . . . yk] = a posteriori (5.1)

x̂−k = E[xk|y1 . . . yk−1] = a priori (5.2)
x̂k|k+N = E[xk|y1 . . . yk+N ] = smoothed (5.3)
x̂k|k−M = E[xk|y1 . . . yk−M ] = predicted (5.4)

1. Dynamic system definition

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

yk = Hkxk + vk

E(wkw
T
j ) = Qkδk−j

E(vkv
T
j ) = Rkδk−j

E(wkv
T
j ) = 0

(5.5)
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2. Initialization: P+
0 = 0 if perfect knowledge, P+

0 =
∞I if no knowledge.

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]

(5.6)

3. KF is computed for each time step k = 1, 2, . . .

(a) Time Update:

P−k = Fk−1P
+
k−1F

T
k−1 +Qk−1 (5.7)

x̂−k = Fk−1x̂
+
k−1 +Gk−1uk−1 (5.8)

(b) Kalman Gain:

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)−1 (5.9)

= P+
k H

T
k R
−1
k (5.10)

(c) Measurement Update:

x̂+
k = x̂−k +Kk(yk −Hkx̂

−
k ) (5.11)

P+
k = (I −KkHk)P−k (I −KkHk)T +KkRkK

T
k

(5.12)

= [(P−k )−1 +HT
k R
−1
k Hk]−1 (5.13)

= (I −KkHk)P−k (5.14)

• Eq. 5.12 is also called "Joseph stabilized version".
More stable and robust. It is symmetric positive
definite given P−k is sysmmetric positive definite.
• Eq. 5.13 is rarely implemented.
• Eq. 5.14 is computationally simpler.
• Kk can be pre-calculated offline except for nonlin-

ear systems.

5.2 KF Properties

Given x̃k = xk − x̂k, x̃ is also a RV. Suppose we
want minE[x̃Tk Skx̃k] where Sk is a positive definite user-
defined weighting matrix.

• If wk and vk are Gaussian, zero-mean, uncorre-
lated, and white, then the KF is the solution to
the above problem.
• If wk and vk are zero-mean, uncorrelated, and

white, then KF is the optimal linear filter (best
filter that is a linear combination of the measure-
ments).
• If wk and vk are correlated or colored, or for non-

linear systems, KF can be modified to solve the
problem.

The quantity (yk − Hkx̂
−
k is called the innovations.

It contains new information about the state. It is zero-
mean and white with covariance (HkP

−
k H

T
k + Rk). In

fact, KF can be interpreted as a filter that whitens the
measurement and extracts the maximum possible info
from the measurement. If mean and covariance of inno-
vation is not as expected, then either the system model
is incorrect or the assumed noise statistics are incorrect.

5.3 One-Step KF Equations

x̂−k+1 = Fk(I −KkHk)x̂−k + FkKkyk +Gkuk (5.15)

P−k+1 = FkP
−
k F

T
k +Qk−

FkP
−
k H

T
k (HkP

−
k H

T
k +Rk)−1HkP

−
k F

T
k

= discrete Riccati eq.

(5.16)

x̂+
k = (I −KkHk)(Fk−1x̂

+
k−1 +Gk−1uk−1) +Kkyk

(5.17)

P+
k = (I −KkHk)(Fk−1P

+
k−1F

T
k−1 +Qk−1) (5.18)

5.4 Alternate Propagation of Covari-
ance

5.4.1 Multiple State Systems

If P−k can be factored as P−k = AkB
−1
k , then P−k+1 =

Ak+1B
−1
k+1. A and B can propagate as follows:

[
Ak+1

Bk+1

]
=

[
(Fk +QkF

−T
k HT

k R
−1
k Hk) QkF

−T
k

F−Tk HT
k R
−1
k Hk F−Tk

] [
Ak
Bk

]
(5.19)

= Φ

[
Ak
Bk

]
= Φk

[
P−1
I

]
(5.20)[

A∞
B∞

]
≈ Φ2large p

[
P−1
I

]
(5.21)

5.4.2 Scalar Systems

[
Ak
Bk

]
= Φk−1

[
A1

B1

]
= M

[
λk−1

1 0

0 λk−1
2

]
M−1

[
P−1
1

]
(5.22)

P−k =
τ1µ

k−1
1 (2RH2P−1 − τ2)− τ2µk−1

2 (2H2P−1 − τ1)

2H2µk−1
1 (2RH2P−1 1− τ2)− 2H2µk−1

2 (2H2P−1 − τ1)
(5.23)

λ1,2 =
H2Q+R(F 2 + 1)± σ

2FR
(5.24)

σ =
√
H2Q+R(F + 1)2

√
H2Q+R(F − 1)2

(5.25)

τ1,2 = H2Q+R(F 2 − 1)± σ (5.26)

µ1,2 = H2Q+R(F 2 + 1)± σ (5.27)

M =

[
τ1

2H2
τ2

2H2

1 1

]
(5.28)

M−1 =
1

τ1(R− 1) + 2σ

[
2RH2 −τ1
−2RH2 Rτ1

]
(5.29)

lim
k→∞

P−k =
τ1

2H2
(5.30)

5.5 Divergence Issues

• (Co)variance increases during time update and de-
creases during measurement update.

• Primary cause of KF failure are finite precision
arithmetic and modeling errors.
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• KF assumes model is precisely known; noise se-
quences wk and vk are pure white, zero-mean, and
completely uncorrelated.
• To improve filter performance:

1. Increase arithmetic precision.
2. Use some form of square root filtering. This

effectively increases arithmetic precision at
the cost of adding complication.

3. Symmetrize P at each time step: P = (P +
PT )/2, change lower triangle, or force eigen-
values to be positive.

4. Initialize P appropriately to avoid large
changes in P .

5. Use fading memory filter. Force to forget
measurement from distant past and more em-
phasis on recent measurements. Exchange
optimality with stability and convergence.

6. Use fictitious process noise (especially for es-
timating "constants"), effectively telling the
filter not to trust the model as much.

• If a system model has too much noise, it becomes
difficult to estimate. If a system model has too
little noise, it is susceptible to modeling errors.

6 Alternate KF formulations

6.1 Sequential KF

KF implementation w/out matrix inversion. Require-
ment: 1) Rk is diagonal (eq. 6.2) OR 2) Rk is con-
stant (eq. 6.3). Normal KF is sometimes called Sequen-
tial/Recursive/Batch KF.

1. System definition

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

yk = Hkxk + vk
(6.1)

Rk = diag(R1k, . . . , Rrk) (6.2)

R = SR̂S−1

ȳk = S−1yk = S−1(Hkxk + vk)

= H̄kxk + v̄k

(6.3)

2. Initialization:

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]

(6.4)

3. At each time step k, time update:

P−k = Fk−1P
+
k−1F

T
k−1 +Qk−1

x̂−k = Fk−1x̂
+
k−1 +Gk−1uk−1

(6.5)

4. At each time step k, measurement update:

(a) Initialize:

x̂+
0k = x̂−k (6.6)

P̂+
0k = P̂−k (6.7)

(b) For i = 1, . . . , r:

Kik =
P+
i−1,kH

T
i,k

HikP
+
i−1,kH

T
ik +Rik

=
P+
i,kH

T
i,k

Rik

x̂+
ik = x̂+

i−1,k +Kik(yik −Hikx̂
+
i−1,k)

P+
ik = (I −KikHik)P+

i−1,k(I −KikHik)T

+KikRikK
T
ik

= [(P+
i−1,k)−1 +HT

ikHik/Rik]−1

= (I −KikHik)P+
i−1,k

(6.8)

(c) End:

x̂+
k = x̂+

rk

P̂+
k = P̂+

rk

(6.9)

6.2 Information Filtering

KF that propagates information matrix I = P−1. Com-
putationally efficient if r >> n (much more measure-
ments than states). More mathematically precise for
the zero initial certain case, while KF is more precise
for the zero initial uncertainty case.

1. Dynamic system definition

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

yk = Hkxk + vk
(6.10)

2. Initialization: P+
0 = 0 if perfect knowledge, P+

0 =
∞I if no knowledge.

x̂+
0 = E(x0)

I+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]−1

(6.11)

3. For each k = 1, 2, . . .

I−k = Q−1
k−1 (6.12)

−Q−1
k−1Fk−1(I+

k−1 + FTk−1Q
−1
k−1Fk−1)−1FTk−1Q

−1
k−1

(6.13)

I+
k = I−k +HT

k R
−1
k Hk (6.14)

Kk = (I+
k )−1HT

k R
−1
k (6.15)

x̂−k = Fk−1x̂
+
k−1 +Gk−1uk−1 (6.16)

x̂+
k = x̂−k +Kk(yk −Hkx̂

−
k ) (6.17)

6.3 Square Root Filtering

To solve numerical precision problem that arises from
cases in which some elements of the state-vector x are
estimated to much greater precision than other elements
of x.
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6.3.1 Condition Number

σ2(P ) = λ(PTP ) = λ(PPT ) (6.18)

κ(P ) =
σmax(P )

σmin(P )
≥ 1 (6.19)

Our goal is to find S such that P = SST . If P is
symmetric positive definite then it always has a square
root (can be more than one).

σ2(P ) = [σ2(S)]2 (6.20)

σmax(P )

σmin(P )
=
σ2
max(S)

σ2
min(S)

(6.21)

κ(P ) = κ2(S) (6.22)

6.3.2 Square Root Time Update Eq.

[
(S−k )T

0

]
= T

[
(S+
k−1)TFTk−1

Q
T/2
k−1

]
(6.23)

where T is a 2n×2n orthogonal matrix computed using
numerical linear algebra methods.

6.3.3 Potter’s Square Root Measurement Up-
date Eq.

6.3.4 Square Root Time Update Eq

[
(Rk +HkP

−
k H

T
k )T/2 K̃T

k

0 (S+
k )T

]
= T̃

[
R
T/2
k 0

(S−k )THT
k (S−k )T

]
(6.24)

K̃k = Kk(Rk +HkP
−
k H

T
k )T/2

(6.25)

where T̃ is a (n + r) × (n + r) matrix computed using
numberical linear algebra methods.

6.3.5 Algos for Orthogonal Transformations
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6.4 U-D Filtering

KF that has twice as much precision but requires less
computation than square root filter. Base on factoriza-
tion P = UDUT where U is an upper triangle matrix
and D is a diagonal matrix. It also has the same re-
quirements as sequential KF.

U =

1 u12 u13

0 1 u23

0 0 1

 (6.26)

D = diag(d11, d22, d33) (6.27)

p11 = d11 + d22u
2
12 + d33u

2
13

p12 = d22u12 + d33u13u23

p13 = d33u13

p22 = d22 + d33u
2
23

p23 = d33u23

p33 = d33

(6.28)

ŪD̄ŪT = [Di−1 −
1

αi
(Di−1U

T
i−1H

T
i )(Di−1U

T
i−1H

T
i )T ]

Ui = Ui−1Ū

Di = D̄

(6.29)

u(k, j) =
wkD̂v

T
j

vjD̂vTj
for j, k = 1, . . . , n

W = U−V

(6.30)

7 KF Generalizations

7.1 Correlated Process and Measure-
ment Noise

General Discrete KF

12



1. System and measurement equations

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

yk = Hkxk + vk

wk ≈ (0, Qk)

vk ≈ (0, Rk)

E[wkw
T
j ] = Qkδk−j

E[vkv
T
j ] = Rkδk−j

E[wk, v
T
j ] = Mkδk−j+1

(7.1)

2. Initialization

x̂+
0 = E(x0)

P̂+
0 = E[(x0 − x̂+

0 )(. . . )T ]
(7.2)

3. For k = 1, 2, . . .

P−k = Fk−1P
+
k−1F

T
k−1 +Qk−1

Kk = (P−k H
T
k +Mk)(HkP

−
k H

T
k +HkMk+

MT
k H

T
k +Rk)−1

= P+
k (HT

k + (P−k )−1Mk)(Rk −MT
k (P−k )−1Mk)−1

x̂−k = Fk−1x̂
+
k−1 +Gk−1uk−1

x̂+
k = x̂−k +Kk(yk −Hkx̂

−
k )

P+
k = (I −KkHk)P−k (I −KkHk)T+

Kk(HkMk +MT
k H

T
k +Rk)KT

k −MkK
T
k −KkM

T
k

= [(P−k )−1 + (HT
k + (P−k )−1Mk×

(Rk −MT
k (P−k )−1Mk)−1(Hk +MT

k (P−k )−1)]−1

= P−k −Kk(HkP
−
k +MT

k )

(7.3)

7.2 Colored Process and Measurement
Noise

7.2.1 Colored Process Noise

wk = ψwk−1 + ζk−1 (7.4)[
xk
wk

]
=

[
F I
0 ψ

] [
xk−1

wk−1

]
+

[
0

ζk−1

]
(7.5)

x′k = F ′k−1x
′
k−1 + w′k−1 (7.6)

E(w′kw
′T
k ) =

[
0 0
0 E(ζkζ

T
k )

]
= Q′k (7.7)

7.3 Colored measurement noise: State
augmentation

vk = ψk−1vk−1 + ζk−1 (7.8)[
xk
vk

]
=

[
F 0
0 ψ

] [
xk−1

vk−1

]
+

[
wk−1

ζk−1

]
(7.9)

yk =
[
Hk I

] [xk
vk

]
+ 0 (7.10)

E(w′kw
′T
k ) =

[
Qk 0
0 Qζk

]
(7.11)

E[v′kv
T
k ] = 0 (7.12)

However, a singular measurement-noise covariance often
results in numerical problems.

7.3.1 Colored measurement noise: Measure-
ment differencing

1. Definition

vk = ψk−1vk−1 + ζk−1 (7.13)
y′k−1 = yk − ψk−1yk−1 (7.14)

= (HkFk−1 − ψk−1Hk−1)xk−1 + (Hkwk−1 + ζk−1)
(7.15)

= H ′k−1xk−1 + v′k−1 (7.16)

2. At each time step

x̂+
k = x̂−k +Kk(y′k −H ′kx̂−k )

x̂−k+1 = Fkx̂
+
k + Ck(y′k −H ′kx̂+

k )

Kk = P−k H
′T
k (H ′kP

−
k H

′T
k +Rk)−1

Mk = QkH
T
k+1

Ck = Mk(H ′kP
−
k H

′T
k +Rk)−1

P+
k = (I −KkH

′
k)P−k (I −KkH

′
k)T +KkRkK

T
k

P−k+1 = FkP
+
k F

T
k +Qk − CkMT

k −
FkKkMk −MT

k K
T
k F

T
k

(7.17)

7.4 Steady-State Filtering

Ways of calculating Kalman gain:

1. numerical simulation
2. discrete algebraic Riccati equation (DARE): as-

sume P−k = P−k+1 in P update eq. then P∞ to
compute for K∞
(a) may not converge to steady state value
(b) may converge to different steady state value

depending on P0

(c) may converge to steady state value but result
in unstable KF

x̂−k = Fx̂+
k−1 (7.18)

x̂+
k = (I −K∞H)Fx̂+

k−1 +K∞yk (7.19)

DARE Theorems Def: matrix pair (F,G) is control-
lable on the unit circle if there exists some matrixK such
that (F − GK) does not have eigenvalues with magni-
tude 1.

Results Conditions (iff.)

Thm P∞ # of sol’n →
_ ss KF

(F,H) (F −MR−1H,G)

23 unique
pos. def.

1 stable detectable stabilizable

24 ≥ 1 pos.
semidef.

1 stable detectable controllable on
unit circle

25 ≥ 1 pos.
def.

1 stable detectable controllable on
and inside unit
circle

26 ≥ 1 pos.
semidef.

geq1
marginally
stable

detectable N/A
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7.4.1 α− β filtering

Newton dynamic system with state position and veloc-
ity.

xk =

[
1 T
0 1

]
xk+1 +

[
T 2/2
T

]
w′k−1

yk =
[
1 0

]
xk + vk

w′k = (0, σ2
w)

(7.20)

K =
[
K1 K2

]
=
[
α β/T

]T (7.21)

K1 = −1

8
(λ2 + 8λ− (λ+ 4)

√
λ2 + 8λ)

K2 =
1

4T
(λ2 + 4λ− λ

√
λ2 + 8λ)

P−11 =
K1σ

2
w

1−K1

P−12 =
K2σ

2
w

1−K1

P−22 = (
K1

T
+
K2

2
)P−12

λ =
σ2
wT

2

R

(7.22)

P+
11 = K1R

P+
12 = K2R

P+
22 = (

K1

T
− K2

2
)P−12

(7.23)

7.4.2 α− β − γ filtering

Newton dynamic system with state position, velocity,
and acceleration.

xk =

1 T T 2/2
0 1 T
0 0 1

xk+1 +

T 2/2
T
1

w′k−1

yk =
[
1 0 0

]
xk + vk

w′k = (0, σ2
w)

(7.24)

K =
[
K1 K2 K3

]
=
[
α β/T φ/2T 2

]T (7.25)

α = 1− s2

β = 2(1− s)2

φ = 2λs

(7.26)

b = λ/2− 3

c = λ/2 + 3

p = c− b2/3

q =
2b3

27
− bc

3
− 1

z =

[
−q +

√
q2 + 4p3/27

2

]1/3

s = z − p/(3z)− b/3

(7.27)

P+
11 = αR

P+
12 = βR/T

P+
13 = φR/2T 2

P+
22 =

8αβ + φ(β − 2α− 4)

8T 2(1− α)
R

P+
23 =

β(2β − φ)R

4T 3(1− α)

P+
33 =

φ(2β − φ)R

4T 4(1− α)

(7.28)

7.4.3 Hamiltonian Approach

1. Form the 2nx2n Hamiltonian matrix for an n state
KF.

H =

[
F−T F−THTR−1H
QF−T F +QF−THTR−1H

]
(7.29)

2. Compute the eigenvalues of H. If any of them are
on the unit circle, then we cannot go any further
with this procedure; the Riccati eq. does not have
a steady-state sol’n.

3. Collect the n eigenvectors that corresponds to the
n eigenvalues that are outside the unit circle. Col-
umn i is the ith eigenvector.[

Φ12

Φ22

]
(7.30)

4. Compute the steady-state Riccati eq. sol’n. Φ12

must be invertible.

P−∞ = Φ22Φ−1
12 (7.31)

H is a symplectic matrix. It satisfies the ff:

1. J−1HTJ = H−1 where J =

[
0 I
−I 0

]
.

2. None of the eigenvalues are 0.
3. If λ is an eigenvalue, then so is 1/λ.
4. The determinant is ±1.

7.5 KF with Fading Memory
Fading-memory filter

1. System equation

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

yk = Hkxk + vk

E(wkw
T
j ) = Qkδk−j

E(vkv
T
j ) = Rkδk−j

E(wkv
T
j ) = 0

(7.32)

2. Initialization
x̂+

0 = E(x0)

P̃+
0 = E[(x0 − x̂+

0 )(. . . )T ]
(7.33)

3. Choose α ≥ 1 based on how much you want the
filter to forget past measurements. α = 1 is like
standard KF. α = ∞ is like taking most recent
measurement only.
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4. For each time step k = 1, 2, . . .

P̃−k = α2Fk−1P̃
+
k−1F

T
k−1 +Qk−1

Kk = P̃−k H
T
k (HkP̃

−
k H

T
k +Rk)−1

= P̃+
k H

T
k R
−1
k

x̂−k = Fk−1x̂
+
k−1 +Gk−1uk−1

x̂+
k = x̂−k +Kk(yk −Hkx̂

−
k )

P̃+
k = (I −KkHk)P̃−k (I −KkHk)T +KkRkK

T
k

=
[
(P̃−k )−1 +HT

k R
−1
k Hk

]−1

= P̃−k KkHkP̃
−
k

(7.34)

7.6 Constrained KF

7.6.1 Model reduction

1. (-) makes interpretation less natural and more dif-
ficult (loses physical meaning)

2. (-) cannot extend inequality constraints
3. (+) straightforward and (usually) easily imple-

mented

7.6.2 Perfect measurements

Add constraints to rows of measurement.

1. (-) singular covariance increase the possibility of
numerical problems

2. (-) inequality constraints are implemented as soft
constraints. difficult to control how close the state
estimate gets to the constraint boundary.

7.6.3 Projection approaches

* to be added *

7.6.4 Pdf truncation approach

* to be added *

8 Nonlinear KF

All systems are ultimate nonlinear.
x0, u0, y0, w0 and v0 are the nominal state, control,

output, system noise and measurement noise.
CT system equation:

ẋ = f(x, u, w, t)

y = h(x, v, y)

w(̃0, Q)

v(̃0, R)

ẋ0 = f(x0, u0, 0, t)

y0 = h(x0, 0, t)

(8.1)

DT system equation:

xk = fk−1(xk−1, uk−1, wk−1)

yk = h(xk, vk)

wk (̃0, Qk)

vk (̃0, Rk)

(8.2)

8.1 Linearized KF

1. CT system equation (eq. 8.1)
2. Compute

A =
δf

δx

∣∣∣∣
0

L =
δf

δw

∣∣∣∣
0

C =
δh

δx

∣∣∣∣
0

M =
δh

δv

∣∣∣∣
0

(8.3)

Q̃ = LQLT

R̃ = MRMT
(8.4)

3. ∆y = y − y0

4.

∆x̂(0) = 0

P (0) = E[(∆x(0)−∆x̂(0))(. . . )T ]

∆ ˙̂x = A∆x̂+K(∆y − C∆x̂)

K = PCT R̃−1

Ṗ = AP + PAT + Q̃− PCT R̃−1CP

(8.5)

5. x̂ = x0 + ∆x̂

Derivation Notes:

1. Taylor series linearization gives us a nominal tra-
jectory which is ≈ actual.

2.
∣∣∣∣
0

means evaluated at nominal control, state, out-

put, and noise values.
3. Taylor approximation gives us:

ẋ ≈ f(x0, u0, w0, t) +A∆x+B∆u+ L∆w (8.6)
y ≈ h(x0, v0, t) + C∆x+M∆v (8.7)

4. Assume w0 = v0 = 0 and u(t) = u0 (perfectly
known).

5. P = covariance of est. error + linearization error

8.2 Extended KF (EKF)

8.2.1 Continuous-time

1. CT system equation (eq. 8.1)
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2. Compute

A =
δf

δx

∣∣∣∣
x̂

L =
δf

δw

∣∣∣∣
x̂

C =
δh

δx

∣∣∣∣
x̂

M =
δh

δv

∣∣∣∣
x̂

(8.8)

Q̃ = LQLT

R̃ = MRMT
(8.9)

3.

x̂(0) = E[x(0)]

P (0) = E[(x(0)− x̂(0))(. . . )T ]

˙̂x = f(x̂, u, w0, t) +K[y − h(x̂, v0, t)]

K = PCT R̃−1

Ṗ = AP + PAT + Q̃− PCT R̃−1CP

(8.10)

Derivation: EKF came from equation ẋ0 + ∆ ˙̂x =
f(x0, u0, w0, t)+A∆x̂+K[y−y0−C(x̂−x0)], and then
choosing x0(t) = x̂(t).

8.2.2 Hybrid

Continuous time dynamics + discrete time measure-
ments.

1. CT system equation (eq. 8.1)
2. Initialization:

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]

(8.11)

3. For k = 1, 2, . . .

(a) Integrate with the ff. eq to get x̂−k and P−k

˙̂x = f(x̂, u, 0, t) (8.12)

Ṗ = AP + PAT + LQLT (8.13)

(b) Substitute Rk with MkRkM
T
k and then use

eq. 5.9-5.10 and 5.12-5.14 to update Kk and
P+
k .

x̂+
k = x̂−k +Kk(yk − hk(x̂−k , 0, tk) (8.14)

Note that between (discrete) measurements times,
R =∞ because we don’t have new measurements.

8.2.3 Discrete-time

1. DT system equation (eq. 8.2)
2. Initialization:

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]

(8.15)

3. For k = 1, 2, . . .

(a) Time update

Fk−1 =
δfk−1

δx

∣∣∣∣
x̂+
k−1

Lk−1 =
δfk−1

δw

∣∣∣∣
x̂+
k−1

(8.16)

P−k = Fk−1P
+
k−1F

T
k−1 + Lk−1Qk−1L

T
k−1

x̂−k = fk−1(x̂+
k−1, uk−1, 0)

(8.17)

(b) Measurement update: substitute Rk with
MkRkM

T
k and then use eq. 5.9-5.10 and 5.12-

5.14 to update Kk and P+
k .

Hk =
δhk
δx

∣∣∣∣
x̂−
k

Mk =
δhk
δv

∣∣∣∣
x̂−
k

(8.18)

x̂+
k = x̂−k +Kk(yk − hk(x̂−k , 0, tk) (8.19)

8.3 Higher Order Approaches

8.3.1 Iterated EKF

Idea: reformulate f and h from previous step since we
have an even better estimate of xk

Similar to sec. 8.2.3 except at measurement up-
date (3b), you do for i = 0, . . . , N . You start with
x̂+
k,0 = x̂−k and P+

k,0 = P−k ; and end with x̂+
k = x̂+

k,N+1

and P+
k = P+

k,N+1.

8.3.2 2nd Order EKF

2nd order hybrid EKF

1. CT system equation (eq. 8.1)
2. Initialization:

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]

(8.20)

3. Time update

˙̂x = f(x̂, u, 0, t) +
1

2

n∑
i=1

φiTr[
δ2fi
δx2

∣∣∣∣
x̂

P ]

Ṗ = FP + PFT + LQLT

φi = [0 . . . 1 . . . 0]T 1 on ith element

F =
δf

δx

∣∣∣∣
x̂

L =
δf

δw

∣∣∣∣
x̂

(8.21)
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4. Measurement update

x̂+
k = x̂−k +Kk[yk − h(x̂−k )]− πk

πk =
1

2
Kk

m∑
i=1

φiTr[Dk,iP
−
k ]

Dk,i =
δ2hi(xk, tk)

δx2

∣∣∣∣
x̂−
k

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk + Λk)−1

Hk =
δh(xk, tk)

δx

∣∣∣∣
x̂−
k

Λk(i, j) =
1

2
Tr(Dk,iP

−
k Dk,jP

−
k )

P+
k = P−k − P

−
k H

T
k (HkP

−
k H

T
k +Rk + Λk)−1HkP

−
k

(8.22)

2nd order discrete EKF

1. DT system equation (eq. 8.2)
2. Initialization:

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]

(8.23)

3. Time update

˙̂x−k+1 = f(x̂, u, 0, t) +
1

2

n∑
i=1

φiTr[
δ2fi
δx2

∣∣∣∣
x̂+
k

P+
k ]

Ṗ−k+1 = FP+
k F

T +Qk

φi = [0 . . . 1 . . . 0]T 1 on ith element

F =
δf

δx

∣∣∣∣
x̂+
k

(8.24)

4. Measurement update

x̂+
k = x̂−k +Kk[yk − h(x̂−k )]− πk

πk =
1

2
Kk

m∑
i=1

φiTr[Dk,iP
−
k ]

Dk,i =
δ2hi(xk, tk)

δx2

∣∣∣∣
x̂−
k

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)−1

Hk =
δh(xk, tk)

δx

∣∣∣∣
x̂−
k

Λk(i, j) =
1

2
Tr(Dk,iP

−
k Dk,jP

−
k )

P+
k = (I −KkHk)P−k

(8.25)

8.3.3 Other Approaches

Gaussian sum filter

1. DT system equation (eq. 8.2
2. Initialization: (a0i must sum to 1)

pdf(x̂+
0 ) =

M∑
i=1

a0iN(x̂+
0i, P

+
0i ) (8.26)

3. For k = 1, 2, . . .

(a) Time update. For i = 1, . . . ,M :

x̂−ki = fk−1(x̂+
k−1,i, uk−1, 0)

Fk−1,i =
δfk−1

δxk−1

∣∣∣∣
x̂+
k−1,i

P−ki = Fk−1,iP
+
k−1,iF

T
k−1,i +Qk−1

aki = ak−1,i

(8.27)

pdf(x̂−k ) =

M∑
i=1

akiN(x̂+
ki, P

+
ki) (8.28)

(b) Measurement update. For i = 1, . . . ,M :

Hki =
δhk
δxk

∣∣∣∣
x̂−
ki

Kki = P−kiH
T
ki(HkiP

−
kiH

T
ki +Rk)−1

P+
ki = P−ki −KkiHkiP

−
ki

x̂+
ki = x̂−ki +Kki[yk − hk(x̂−ki, 0)]

(8.29)

rki = yk − hk(x̂−ki, 0)

Ski = HkiP
−
kiH

T
ki +Rk

βki =
exp[−rTkiS

−1
ki rki/2]

(2π)n/2|Ski|1/2

aki =
ak−1,iβki∑M
j=1 ak−1,jβkj

(8.30)

pdf(x̂+
k ) =

M∑
i=1

akiN(x̂+
ki, P

+
ki) (8.31)

• grid based filtering - valud of the pdf of the state
is approximated, stored, propagated, and updated
at discrete points in space.

• compute the theoretical optimal nonlinear filter
and then linearize the nonlinear filter. Theoret-
ical optimal is very difficult to compute.

8.4 Parameter Estimation

Estimate not only the state of the system, but also the
parameters of the system.

9 Others

http://www.doc88.com/p-714869662960.html

A, b (9.1)
A, b (9.2)
A,b (9.3)
A, b (9.4)
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